

Rust

A safe, concurrent, practical language

Graydon Hoare
<graydon@mozilla.com>

October 2012

mailto:graydon@mozilla.com

This is not a marketing talk

● Purpose:
– Convince you there's something interesting here
– Provide some technical details to whet your appetite

● Assuming:
– You're a systems programmer
– You know >3 existing non-toy languages

● One of which is C++
● One of which is ML, Haskell, C# or Scala
● Lisp and Smalltalk folks: we love you too

Practical ≈ Realistic

● No silver bullets
● No free lunches
● Nothing new under the sun
● PL design has >50 years of history
● Most good ideas discovered in the first 20
● PL design work ≈ taste, selection, tradeoffs
● “New language” ≈ new balance, suited to times

Some Rust code: the Algol basics

fn main() {
 io::println("hello, world");
}

struct Point {x:int, y:int}
let a = Point {x:1, y:2};
assert 1 == a.x;

fn fact(x: int) -> int {
 if x == 1 {
 return 1;
 } else {
 return x * fact(x-1);
 }
}

enum Color {Red, Green, Blue}
let x = Red;
assert x != Blue;
match x {
 Red => foo(1),
 _ => bar(2)
}

fn foo() {
 let x = [1,2,3,4];
 let mut i = 0;
 while i < x.len() {
 bar(x[i]);
 i += 1;
 }
}

let a: str = "hello";
let b: char = 'ᴪ'; // Unicode
let c: i8: 0b1010_0000 | 0xf;
let d: u32: 0xdeadc0de;
let e: bool = true;
let f: (int, float) = (1, 1.2);
let g: [int] = [1,2,3,4];

Some Rust code: the FP basics

[1,2,3].map(|x| x+1) ~[2,3,4]

Anonymous functions & type inference

enum Shape {
 Circle(float),
 Square(float),
 Rect(float,float)
}

fn area(s: Shape) -> float {
 match s {
 Circle(r) => float::pi * (r * r),
 Square(s) => s * s,
 Rect(w,h) => w * h
 }
}

Pattern matching & tagged unions

Seriously, everyone can do that stuff

● Rust picks up 4 slightly less-common things:
1. Value types: all pointers & allocations are explicit

2. Borrowing: static reasoning about pointer lifetimes

3. Owned types: differentiating "move" from "copy"

4. Traits: code reuse, generic bounds, vtables

● Rest of this talk will be about these 4 things
– Note: 3 of 4 are about the memory model

Value types: overview

● Pointers explicit; non-pointer values interior.
● This is what all historical "systems languages"

do: Algol, PL/1, C/C++, Pascal/Modula, etc.
● In newer languages it's becoming increasingly

rare: C# and Go are a couple exceptions.
● We consider it an essential part of coding at

this level of abstraction. No apologies.

Value types

struct Point { x: int,
 y: int }

Rust: 64bits
 64bits

struct Rect { a: Point,
 b: Point }

class Point { long x;
 long y; }

Java:

class Rect { Point a;
 Point b; }

64bits
 64bits
64bits
 64bits

64bits
 64bits

Header

64bits
 64bits

Header

64bits
 64bits

Header

64bits
 64bits

Header

OverheadData

Value types: cont'd

● These costs add up
– Especially bad on arrays, "dense" collections

– Count allocator slop, headers, alignment...

● Avoiding heap when you can really matters
– PLDI'09 Mitchell & Sevitsky, Java heap costs:

● 80% overhead in common library structures!
● Worse on 64bit

Value types: cont'd

Pointers are always explicit, and there are 4 types

Rust syntax Name C++ analogy

&T borrowed pointer T&

@T managed pointer std::shared_ptr<T>

~T owning pointer std::unique_ptr<T>

T raw pointer T

Two of these are interesting, two are boring

The two boring pointer types

● @T (managed pointer): GC'ed, task-local, general
purpose, shallow copies, cycles OK.

● *T (raw pointer): No guarantees, arithmetic allowed,
dereferencing is unsafe. Exists for interop with C and
places where you need to break the rules.

● Nothing more will be said about either of these.

Borrowing: overview

● Pointers (implicitly) statically qualified by the
lifetime of the thing they point to.

● This is commonly called a region system.
Several safe ones exist: ML Kit, Cyclone, Real-
Time Java, ParaSail.

● Captures the unsafe idiom of arenas, stack-
discipline in allocation lifetimes; arguably a
special case of the generational GC hypothesis.

Borrowing

● In C++, T& is a pointer with idiomatic meaning

– "someone else will (probably) keep referent alive"

– is somewhat second class, can't reassign

● In Rust, &T means same, but it's guaranteed

– If it compiles, it will not point to garbage memory

– is first class, can copy, reassign, return

Borrowing: cont'd

struct Point { x: int, y: int }

fn main() {
 let p = Point {x: 10, y: 11};
 let yp = get_y(&p);
}

fn get_y(pp: &r/Point) -> &r/int {
 return &pp.y;
}

p.x
 p.y

main()

get_x()
&p

yp

● Plain values are allocated on the stack
● Pass (and return!) via borrowing, proven safe

stack

Borrowing: cont'd

● Can borrow any pointer type
– Managed and owning pointers auto-borrow

struct Point { x: int, y: int }

fn main() {
 let p = @Point {x: 10, y: 11};
 let yp = get_y(p);
}

fn get_y(pp: &r/Point) -> &r/int {
 return &pp.y;
}

main()

get_x()
&p

yp x
y

p @box

stack @ heap

Borrowing: conclusion

● Borrowing is fantastic!
– The GC can completely ignore borrowed pointers

● Possible to write pointer-rich Rust code w/o any GC

– Zero runtime cost
● No headers, no allocation slop, no GC
● Can safely point into middle of other allocations

– Guaranteed live
● Subsume arenas, stack pointers, temporary uses
● Used for environment capture in stack closures too!

Owned types: overview

● Owning pointers go by many names: unique, linear / affine,
substructural, ownership.

● Present in many languages: Clean, C++, Linear Lisp,
Linear ML, Mercury.

● Simple idea: 1:1 relationship between pointer:pointee.
● Seems useless! But actually very useful.
● Supports resource accounting and ownership transfer.
● In Rust's case: between concurrent tasks.

Owned types: cont'd

● One diagram should make it clear
– Two tasks, big message, O(1 ptr) send, no locks:

struct Msg { buf:[int * 1024] }

fn task_1(c: Chan<~Buf>) {
 let b = ~Msg {buf:[0,...]};
 c.send(move b);
 // b now deinitialized
}

task_1(c)

b
task_2(p)

0
...

b ~box

stack #1 ~ heap

stack #2

...

...

...

fn task_2(p: Port<~Buf>) {
 let b = p.recv()
}

~heap

Task 1

Owned types vs. managed

stack 1
...

@heap 1
...

Task 2
stack 2
...

@heap 2
...

Task N
stack N
...

@heap N
...

...

...
...
...

...

...
...
...

...

Many concurrent systems have a diagram like this:
managed types are task-local; owned can be sent.

Owned types: conclusion

● Owning a type means cheap send w/o copy
● Also means other curious / subtle things:

– Converting mutable value to (deep) immutable

– Immediate free when pointer goes out of scope

– Destructors, RAII, top-down resource release

– Avoiding all unnecessary copies, even shallow
ones (which carry GC or RC accounting costs)

– Requires thinking about ownership, copy vs. move

Traits: overview

● Three different concepts mushed together:
– Typeclasses (a la Haskell 98, C++ "concepts")

– Existentials (a la C++ virtuals, Java interfaces)

– Traits (a la Self, Scala, Fortress)

● Generally, "trait" ≈ a pair of method-sets:
– Set of methods required on a type

– Set of methods provided on a type

Traits

// Define a trait

trait ToStr {
 fn to_str() -> str;
}

// Implement a trait on a type

impl int : ToStr {
 fn to_str() -> str {
 int::to_str(self)
 }
}

Traits: cont'd

// Use a trait directly as a method on known type

let x : int = 10;
let s : str = x.to_str();

// Use a trait-method via a type-parameter bound

fn f<T:ToStr>(x: &T) {
 io::println(x.to_str());
}

f(10); // Specializes f for int, likely inlines

Traits: cont'd

// Implement same trait for a different type

impl float : ToStr {
 fn to_str() -> str {
 float::to_str(self);
 }
}

// Use multiple different instances via vtables

let xs : [@ToStr] = [10 as @ToStr, 65.3 as @ToStr];
for xs.each |x| {
 print_one(x); // Borrow &ToStr, pass vtable
}

fn print_one(x: &ToStr) {
 io::println(x.to_str());
}

Traits: conclusion

● Traits are a nice sweet-spot:
– Open: can add new methods to existing types

– Safe: generic code states exact requirements

– Efficient: usually bind statically, specialize, inline

– Flexible: when heterogeneous, can use vtables

– Simple: not entangled with "is-a", data model

Conclusion

● Hopefully you see stuff that's appealing

● Please come join in, help out, report bugs
– http://www.rust-lang.org
– http://github.com/mozilla/rust
– irc.mozilla.org #rust

● Thanks!

http://www.rust-lang.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

