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This is not a marketing talk

● Purpose:
– Convince you there's something interesting here
– Provide some technical details to whet your appetite

● Assuming:
– You're a systems programmer
– You know >3 existing non-toy languages

● One of which is C++
● One of which is ML, Haskell, C# or Scala
● Lisp and Smalltalk folks: we love you too



  

Practical ≈ Realistic

● No silver bullets
● No free lunches
● Nothing new under the sun
● PL design has >50 years of history
● Most good ideas discovered in the first 20
● PL design work ≈ taste, selection, tradeoffs
● “New language” ≈ new balance, suited to times



  

Some Rust code: the Algol basics

fn main() {
    io::println("hello, world");
}

struct Point {x:int, y:int}
let a = Point {x:1, y:2};
assert 1 == a.x;

fn fact(x: int) -> int {
    if x == 1 {
        return 1;
    } else {
        return x * fact(x-1);
    }
}

enum Color {Red, Green, Blue}
let x = Red;
assert x != Blue;
match x {
    Red => foo(1),
    _   => bar(2)
}

fn foo() {
    let x = [1,2,3,4];
    let mut i = 0;
    while i < x.len() {
        bar(x[i]);
        i += 1;
    }
}

let a: str = "hello";
let b: char = 'ᴪ'; // Unicode
let c: i8: 0b1010_0000 | 0xf;
let d: u32: 0xdeadc0de;
let e: bool = true;
let f: (int, float) = (1, 1.2);
let g: [int] = [1,2,3,4];



  

Some Rust code: the FP basics

[1,2,3].map(|x| x+1) ~[2,3,4]

Anonymous functions & type inference

enum Shape {
    Circle(float),
    Square(float),
    Rect(float,float)
}

fn area(s: Shape) -> float {
    match s {
        Circle(r) => float::pi * (r * r),
        Square(s) => s * s,
        Rect(w,h) => w * h
    }
}

Pattern matching & tagged unions



  

Seriously, everyone can do that stuff

● Rust picks up 4 slightly less-common things:
1. Value types: all pointers & allocations are explicit

2. Borrowing: static reasoning about pointer lifetimes

3. Owned types: differentiating "move" from "copy"

4. Traits: code reuse, generic bounds, vtables

● Rest of this talk will be about these 4 things
– Note: 3 of 4 are about the memory model



  

Value types: overview

● Pointers explicit; non-pointer values interior.
● This is what all historical "systems languages" 

do: Algol, PL/1, C/C++, Pascal/Modula, etc. 
● In newer languages it's becoming increasingly 

rare: C# and Go are a couple exceptions.
● We consider it an essential part of coding at 

this level of abstraction. No apologies.



  

Value types

struct Point { x: int,
               y: int }

Rust: 64bits
 64bits 

struct Rect { a: Point,
              b: Point }

class Point { long x;
              long y; }

Java:

class Rect { Point a;
             Point b; }

64bits
 64bits 
64bits
 64bits 

64bits
 64bits 

Header

64bits
 64bits 

Header

64bits
 64bits 

Header

64bits
 64bits 

Header

OverheadData



  

Value types: cont'd

● These costs add up
– Especially bad on arrays, "dense" collections

– Count allocator slop, headers, alignment...

● Avoiding heap when you can really matters
– PLDI'09 Mitchell & Sevitsky, Java heap costs:

● 80% overhead in common library structures!
● Worse on 64bit



  

Value types: cont'd

Pointers are always explicit, and there are 4 types

Rust syntax Name C++ analogy

&T borrowed pointer T&

@T managed pointer std::shared_ptr<T>

~T owning pointer std::unique_ptr<T>

*T raw pointer T*

Two of these are interesting, two are boring



  

The two boring pointer types

● @T (managed pointer): GC'ed, task-local, general 
purpose, shallow copies, cycles OK.

● *T (raw pointer): No guarantees, arithmetic allowed, 
dereferencing is unsafe. Exists for interop with C and 
places where you need to break the rules.

● Nothing more will be said about either of these.



  

Borrowing: overview

● Pointers (implicitly) statically qualified by the 
lifetime of the thing they point to.

● This is commonly called a region system. 
Several safe ones exist: ML Kit, Cyclone, Real-
Time Java, ParaSail.

● Captures the unsafe idiom of arenas, stack-
discipline in allocation lifetimes; arguably a 
special case of the generational GC hypothesis.



  

Borrowing

● In C++, T& is a pointer with idiomatic meaning

– "someone else will (probably) keep referent alive"

– is somewhat second class, can't reassign

● In Rust, &T means same, but it's guaranteed

– If it compiles, it will not point to garbage memory

– is first class, can copy, reassign, return



  

Borrowing: cont'd

struct Point { x: int, y: int }

fn main() {
    let p = Point {x: 10, y: 11};
    let yp = get_y(&p);
}

fn get_y(pp: &r/Point) -> &r/int {
   return &pp.y;
}

p.x
 p.y 

main()

get_x()
&p

yp

● Plain values are allocated on the stack
● Pass (and return!) via borrowing, proven safe

stack



  

Borrowing: cont'd

● Can borrow any pointer type
– Managed and owning pointers auto-borrow

struct Point { x: int, y: int }

fn main() {
    let p = @Point {x: 10, y: 11};
    let yp = get_y(p);
}

fn get_y(pp: &r/Point) -> &r/int {
   return &pp.y;
}

main()

get_x()
&p

yp x
y

p @box

stack @ heap



  

Borrowing: conclusion

● Borrowing is fantastic!
– The GC can completely ignore borrowed pointers

● Possible to write pointer-rich Rust code w/o any GC

– Zero runtime cost
● No headers, no allocation slop, no GC
● Can safely point into middle of other allocations

– Guaranteed live
● Subsume arenas, stack pointers, temporary uses
● Used for environment capture in stack closures too!



  

Owned types: overview

● Owning pointers go by many names: unique, linear / affine, 
substructural, ownership.

● Present in many languages: Clean, C++, Linear Lisp, 
Linear ML, Mercury.

● Simple idea: 1:1 relationship between pointer:pointee.
● Seems useless! But actually very useful.
● Supports resource accounting and ownership transfer.
● In Rust's case: between concurrent tasks.



  

Owned types: cont'd

● One diagram should make it clear
– Two tasks, big message, O(1 ptr) send, no locks:

struct Msg { buf:[int * 1024] }

fn task_1(c: Chan<~Buf>) {
    let b = ~Msg {buf:[0,...]};
    c.send(move b);
    // b now deinitialized
}

task_1(c)

b
task_2(p)

0
...

b ~box

stack #1 ~ heap

stack #2

...

...

...

fn task_2(p: Port<~Buf>) {
    let b = p.recv()
}



  

~heap

Task 1

Owned types vs. managed

stack 1
...

@heap 1
...

Task 2
stack 2
...

@heap 2
...

Task N
stack N
...

@heap N
...

...

...
...
...

...

...
...
...

... ... ...

Many concurrent systems have a diagram like this:
managed types are task-local; owned can be sent.



  

Owned types: conclusion

● Owning a type means cheap send w/o copy
● Also means other curious / subtle things:

– Converting mutable value to (deep) immutable

– Immediate free when pointer goes out of scope

– Destructors, RAII, top-down resource release

– Avoiding all unnecessary copies, even shallow 
ones (which carry GC or RC accounting costs)

– Requires thinking about ownership, copy vs. move



  

Traits: overview

● Three different concepts mushed together:
– Typeclasses (a la Haskell 98, C++ "concepts")

– Existentials (a la C++ virtuals, Java interfaces)

– Traits (a la Self, Scala, Fortress)

● Generally, "trait" ≈ a pair of method-sets:
– Set of methods required on a type

– Set of methods provided on a type



  

Traits

// Define a trait

trait ToStr {
    fn to_str() -> str;
}

// Implement a trait on a type

impl int : ToStr {
    fn to_str() -> str {
       int::to_str(self)
    }
}



  

Traits: cont'd

// Use a trait directly as a method on known type

let x : int = 10;
let s : str = x.to_str();

// Use a trait-method via a type-parameter bound

fn f<T:ToStr>(x: &T) {
    io::println(x.to_str());
}

f(10);  // Specializes f for int, likely inlines



  

Traits: cont'd

// Implement same trait for a different type

impl float : ToStr {
    fn to_str() -> str {
        float::to_str(self);
    }
}

// Use multiple different instances via vtables

let xs : [@ToStr] = [10 as @ToStr, 65.3 as @ToStr];
for xs.each |x| {
    print_one(x); // Borrow &ToStr, pass vtable
}

fn print_one(x: &ToStr) {
    io::println(x.to_str());
}



  

Traits: conclusion

● Traits are a nice sweet-spot:
– Open: can add new methods to existing types

– Safe: generic code states exact requirements

– Efficient: usually bind statically, specialize, inline

– Flexible: when heterogeneous, can use vtables

– Simple: not entangled with "is-a", data model



  

Conclusion

● Hopefully you see stuff that's appealing

● Please come join in, help out, report bugs
– http://www.rust-lang.org
– http://github.com/mozilla/rust
– irc.mozilla.org #rust

● Thanks!

http://www.rust-lang.org/
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