

Project Servo

Technology from the past
come to save the future

from itself

Mozilla Annual Summit, July 2010
<graydon@mozilla.com>

Hi
● I have been writing a compiled, concurrent,

safe, systems programming language for the
past four and a half years.

● Spare-time kinda thing. Yeah, I got problems.
● A small group of people in Mozilla got

interested in it this past year, once I told them
what I was up to.

● We've been trying to finish it for the past few
months, to see what we can make of it.

OMGWTFBBQ?!
● Relax.
● There is no master plan, nefarious plot, etc.
● You are not going to be forced to use it.
● We are not “rewriting the browser”. That's

impossible. Put down the gun.
● We do not know what exactly will come of it.
● It was a coincidence of a maturing side project

and a desire for some slightly less-annoying
language technology, nothing crazy.

Why Oh Why? (#1)
● C++ is well past expiration date:

– Wildly unsafe in almost every way
● Memory unsafe, no ownership policies, no concurrency

control at all, can't even keep const values constant.
– Heavily burdened with legacy issues

● Absurd compilation model, weak linkage and module
system, nigh-impossible to write tools for.

– Spend more time fighting its weaknesses than
seems reasonable.

● Maybe you've noticed?

Why Oh Why (#2)
● Most “new” languages are unsuitable. One or

more of:
– JVM/CLR or similar tie-in, VM/FFI burden.
– Complex GC + pointer-heavy = poor memory use.
– “Different paradigm” (hard to find talent for,

comprehension barrier, unpredictable).
– “Script language” (few types or static checks).
– Mostly ignore isolation, interference, concurrency.

● Everyone is dodging the niche I'm interested in.

Introducing: Rust
● Rust is a language that mostly cribs from past

languages. Nothing new.
● Unapologetic interest in the static, structured,

concurrent, large-systems language niche.
– Not for scripting, prototyping or casual hacking.
– Not for research or exploring a new type system.

● Concentrate on known ways of achieving
– more safety,
– more concurrency,
– less mess.

Nothing new?
● Hardly anything. Maybe a keyword or two.
● Many older languages better than newer ones:

– eg. Mesa (1977), BETA (1975), CLU (1974) ...
● We keep forgetting already-learned lessons.

● Rust picks from 80s / early 90s languages:
– Nil (1981), Hermes (1990),
– Erlang (1987),
– Sather (1990),
– Newsqueak (1988), Alef (1995), Limbo (1996),
– Napier (1985, 1988).

A quick taste (#1)
● It looks like a C-lineage family:

fn main() {
 log “hello, world”;
}

● It has most of the usual statements:
fn max(int x, int y) -> int {
 if (x > y) {
 ret x;
 } else {
 ret y;
 }
}

A quick taste (#2)
● Stack iterators:

iter range(int lo, int hi) -> int {
 while (lo < hi) {
 put lo;
 lo += 1;
 }
}
fn main() {
 for each (int i in range(1, 10)) {
 log i;
 }
}

A quick taste (#3)
● Lightweight tasks:
fn worker(int lo, int hi) {
 while (lo < hi) {
 log lo;
 lo += 1;
 }
}
fn main() {
 let task t0 = spawn worker(1, 100);
 let task t1 = spawn worker(100, 200);
 join t0;
 join t1;
}

A quick taste (#4)
● Structural objects and local type inference:
obj counter(int i) {
 fn incr() {
 i += 1;
 }
 fn get() -> int {
 ret i;
 }
}
fn main() {
 auto c = counter(10);
 c.incr();
 log c.get();
}

A quick taste (#5)
● Type-parametric code and structural types
obj swap[T](tup(T,T) pair) -> tup(T,T) {
 ret tup(pair._1, pair._0);
}
fn main() {
 auto str_pair = tup(“hi”, “there”);
 auto int_pair = tup(10, 12);
 str_pair = swap[str](str_pair);
 int_pair = swap[int](int_pair);
}

Ok, that could go on all day
● There is a lot I'm not showing there.
● The semantics is the interesting part.
● The syntax is, really, about the last concern.
● That was just a “taste” so you don't get all

frustrated wondering what it looks like and/or
assume that at the last minute it's going to read
like Lisp or Haskell
– (Hush, I know and love these languages, but there

is a time and place).

Details! (#1)
● Static safety:

– Memory safety, no wild pointers.
– Typestate system, no null pointers.
– Mutability control, immutable by default.
– Side-effect control, pure by default.

Details! (#2)
● Dynamic safety:

– Bounds-checked indexing, trapped signals, etc.
– Dynamic assertions drive typestates.
– All errors cause failure, unwinding.

● “Expected errors”? Use a disjoint union return.
– Failure of a task is non-recoverable.

● “Crash-only” tasks with isolation, trapping.
● Pervasive logging, annotations for unwinding.
● Supervision / restart task ownership tree.

Details (#3)
● Pragmatic safety:

– You can break the static rules.
– You have to authorize where and how.
– In a standard way, that's integrated into the

language and easy to audit.
– And globally visible, in a single place per-project.

● Device for applying (or ignoring) social pressure.
● Mechanism not policy.
● Decide for yourself how strong your stomach is.

Details! (#4)
● Structural type bestiary:

– Records, tuples, vectors.
– Tagged disjoint unions.
– First class functions (with bindings).
– Structural objects.

● Lightweight.
● Immutable by default also.
● No classes, no class hierarchy.

– Just object types and objects that conform to them.

Details! (#5)
● Actor language bestiary:

– Lightweight tasks (spawn 100k tasks = ~1s)
– Async, half-duplex, weak, transmittable channels.

● “buffered capabilities”.
– No shared mutable state.
– Can only pass immutable messages.
– Idempotent task failure, failure-signal linkage.

Details! (#6)
● Systems language bestiary:

– Fast calling of C (~8 insns, switch stacks).
– Fast and safe stack-iterators (no cursor objects).
– No global GC to fight (only per-task, mutable bits).
– Real data structures (incl. nested structures).

● Stack allocation, destructors, RAII.
– Multi-file compilation / optimization.

● ELF/MachO/PE + DWARF.
● works with GDB, valgrind, shark, etc.

Details (#7)
● Multi-paradigm (hopefully clear by now).

– Not “everything is an object”.
● The object system is “pay as you go”, feature-wise.

– Equal(-ish) support given to FP, procedural, actor
and OO styles.

● Different abstractions for different problems, trade-offs
between control and expression, clarity and brevity.

● Different strengths and weaknesses in each style.
● Hopefully they combine tastefully.

Details! (#8)
● Other useful bits (trying to be thorough).

– Type-parametric code.
– Bignums.
– Nested modules with import/export control.
– UTF8 strings (not UCS2).
– Marked syntax-extension system.
– Reflection, dynamic type, type-switch.

● None of this stuff is particularly novel.

Implementation status
● Young, immature, hobby project until lately.

– Mostly-done design by now, heads down.
– ~90% language features “working” in rough form.
– ~70% runtime working.

● 38kloc bootstrap compiler (Ocaml).
– Built-in x86 backend for Linux, Win32, OSX.
– LLVM backend in progress.

● Minimal standard library, mostly tests.

Inevitable question: is this like “Go”?
● No.

– I've been working on Rust for years. Coincidence.
There are dozens of actor languages in the
pipeline. Go to a PL conference and ask around.

● Go seems to be barking up a different tree?
– Has coroutines, but kept shared mutable state.
– Has memory safety, but kept null pointers.
– Has unwinding, but no destructors or RAII.
– Has message passing, but no immutability.
– Has some built-in generics, but not in user code.

Immediate plans
● Keep hacking on compiler, library, runtime.

– Eventually transition to self-hosted frontend, LLVM
backend.

– Build out libraries and bindings.
● Need help:

– Experienced language implementors!
– Anyone who feels like bug fixing or library-writing.
– Please: no research or novelty! There's plenty of

known-good technology in the literature.
– Also please: skip syntax or bikeshed arguments.

Released?
● Kinda. Not in any “supported” or stable sense.
● It's not ready for general use, but we felt bad

enough keeping this quiet as long as we did.
– Mostly my request, because I'm shy, and also

because it was in flux for a while and needed
focused attention and work, not debate.

● Hosting in public now.
● BSD-licensed, Github-hosted, we require

committer agreement from you for us to pull.

Fini

github.com/graydon/rust

Demos and
Q and A time!

