
Activation Energy:
Technology Landscapes
and Forces of Adoption

Fall 2023

Introduction

Hi

• I'm an industrial programmer,
not researcher!

• Here by invitation, mainly to
tell undergrads strange history
stories in a different talk.

• This talk is more reflecting on
own experience, to provoke
conversation and speculate a
bit about the future.

The Author in 1984 learning how to get out of vi

Technology Adoption

• I've had good fortune to have
front-row seating during two
technology adoption events  
in programming

• Distributed version control

• Memory-safe systems PLs

• I gather this is something
every researcher wants to
have happen to their work! https://commons.wikimedia.org/wiki/File:A_laptop_and_a_typewriter.jpg CC-BY-SA 2.0

Conditions

• Each saw several attempts
"before conditions were right"

• This is a talk about conditions
being right, and not about
anything intrinsic in the tech

• Thesis: tech maturity only
one ingredient in uptake

• At the end, will talk about
application to .. databases?

Distributed Version Control

• For a long time (15 years?)
everyone used CVS

• Flurry of activity in early 2000s

• SVN, DCVS, CVSNT,
OpenCM, BitKeeper, Arch,
Bazaar, CodeVille,
Monotone (mine), Hg, Git

• Git won, for several reasons

Memory-safe systems PLs

• For a long time (25 years?)
everyone used C & C++; there
was a "VM language" detour
(Java & C#) but didn't unseat

• Flurry of activity in late 2000s /
early 2010s

• Cyclone, Nim, ParaSail, Go,
Rust (mine), Swift, Clay, BitC

• I'm not going to declare any
"winner" here yet

Innovation alone didn't
drive either event

• If you look into proclaimed
"technical innovations" in any
of these projects, you'll see
stuff lying around for decades

• Content addressing and
linked timestamps predated
Monotone by 10+ years

• Linear Lisp, Clean, Cyclone
predated Rust by 10+ years

• Just "slow tech transfer"?

https://commons.wikimedia.org/wiki/File:Clock,_Cremyll_Quay_Landing.jpg CC-BY-SA 4.0

Another model
• Chemistry analogy: activation energy

• Technology sits in stable state due
to barriers (people, processes)

• Conditions dictate change of state:

• Pressure to change raised
("forcing")

• Barriers to change lowered
("enabling")

• Many people sense this happening
and throw their hats in the ring!

• Innovation happened before

https://commons.wikimedia.org/wiki/File:Rxn_coordinate_diagram_5.PNG CC-BY-SA 3.0

Consequences of model
• Many factors force & enable

• Make a list of several things
wrong with current systems,
consider fixing many at once

• Don't neglect the enabling:
what's preventing change? did
any old barriers change?

• Grab bag of Other Stuff will  
"come along for the ride"

• Some "technical upgrades",
some "downgrades"

• Just accept this will happen
https://commons.wikimedia.org/wiki/File:Shopping_list_20170612.jpg CC-BY-SA 4.0

Sometimes changes
bring technical "downgrades"
• Minicomputers to micros

• Desktop software to web

• Mice and keyboards to touch

• Static to dynamic PL designs

• Strong to eventual consistency

• These are not necessarily bad
but they are "downgrades" in
the sense of removing existing
tech because the new state
has different requirements

https://commons.wikimedia.org/wiki/File:Touchscreen.jpg CC-BY 2.5

Distributed Version
Control

DVC forcing conditions
• CVS was inadequate in many ways

• Non-atomic commits

• Synchronous online "updates"
that clobber workspace

• No offline actions at all

• Branching slow and fragile

• Didn't remember last merge

• No ability to fork, admin is
gatekeeper to project history

• Renames, binary data, etc. etc. https://commons.wikimedia.org/wiki/File: 
Diamond_road_sign_merge_to_single_lane.svg CC-BY

DVC enabling conditions

• Disks big enough and
networks fast enough to
replicate whole repo to clients

• Servers obtainable enough for
users to host their own repos

• Widespread cryptography to
play around with new models
of collaboration and trust
(SSH, PGP, SHA-1)

DVC technical upgrades
and downgrades

• Upgrades:

• Content addressing (venti)

• Linked timestamps

• Binary diffing (rsync, xdelta)

• Atomicity, renames, better merges

• Downgrades:

• Weakened confidentiality control

• Every replica gets everything!

• Weakened integrity control

• Every replica claims truth!

• UI got extremely complex

• 3 possible meanings of any git ref?!

Memory-Safe Systems
Programming Languages

Memory-Safe Systems PL
forcing conditions

• C++ memory unsafety causing
constant security exploits

• Much worse with threads, and
suddenly CPUs are multicore

• Nightmare build systems,
using 3rd party packages hard

• Illegible template errors

• Younger devs avoiding entirely https://commons.wikimedia.org/wiki/File: 
Wallpapersden.com_anonymous-hacker-working_1280x720.jpg CC-BY 4.0

Memory-Safe Systems PL
enabling conditions

• LLVM, LLVM, LLVM

• Wealthy industrial benefactors
from dotcom & mobile booms

• Free academic publications:
Citeseer and ArXiv

• Accessible new books on type
systems and compilers
(Pierce, Appel)

Memory-Safe Systems PL
technical upgrades and downgrades

• Upgrades:

• GC, RC, affine types or at least some
discipline for general memory safety

• Sometimes also data-race freedom

• FP-style tools for generic code  
(protocols, typeclasses, existentials)

• Integrated build, test & packaging

• Downgrades:

• Often new fussy static rules (lifetimes?!)

• Mostly single "reference implementations"

• OO-style tools for generic code 
(overloading, specialization, inheritance)

Next-Generation
Databases!

(and maybe IFC)

Databases
• Thesis: pressure building for a

technology adoption event in
databases (or "data systems")

• Pure speculation on my part

• Largely same structure since
1970s, but now with WAN web
and mobile clients interacting
with DB via manual glue code

• System full of annoyances!

• Biggest shift was "NoSQL",
which removed features!

Database
forcing conditions

• Fragile replication and backup

• Bad versioning, incrementalism

• Poor built-in query languages

• Impedance mismatches, low integration

• Code/DB data model (ORMs)

• WAN/DB (auth, caching)

• Repetitive manual UIs for CRUD

• Schema migration & reflection

• Siloing, lack of federation, schema interop

• Increasing data regulations (residency,
retention, privacy, deletion)

Database
enabling conditions

• Dramatic single-node perf improvement

• NVMe, io_uring, large memories, multicore, GPUs

• Vectorized interpreters (VectorWise)

• Commodity columnar formats (Parquet, ORC, Arrow)

• Commodity cloud object storage (S3)

• Theory improvements

• Deterministic DB protocols (Calvin)

• Differential dataflow, IVM, "Datalog 2.0"

• Commodity machine learning

• Text, vector search, schema matching

• Stable set of "native UI" targets

• Accessible new books on databases and distributed
systems (Petrov, Kleppmann)

• Possibly also Rust :)

(Plausible)
Database technical

upgrades and downgrades
• Upgrades:

• Provenance, data-policy compliance

• Code in DB; typed, compositional PLs

• Standard system-provided CRUD UIs

• Federation, pub/sub, WAN clients

• IVM and versioning

• Online hot replicas & continuous backups

• Downgrades:

• Interactive transactions, dependent queries

• Large menu of isolation levels, complex
concurrency control for peak performance

• ARIES, complex durability protocols

Surely we have enough
databases already?

• Many address some subset of issues!

• dbdb.io has 900+ DBs,  
db-engines.com has 400

• Far fewer addressing structural issues
of the whole "data system"

• Most treat DB as "separate part"

• A few attempts that didn't stick:

• "distributed objects"

• "semantic web" / "linked data"

• "web3"
https://commons.wikimedia.org/wiki/File:Database_models.jpg CC-BY-SA 3.0

Looking to The Past?
• My view: we took a bit of a 

wrong turn with the web?

• Or at least .. the web only 
does some things well

• 80s-90s 4GLs allowed simple
development of end-to-end apps

• DB, PL, UI (forms & tables) all  
co-designed, tightly integrated

• Doing today would embrace WAN

• No-code / Low-code systems are
currently dabbling here

• Market: line-of-business and ERP apps

Information Flow Control
(IFC)

• IFC hasn't really made it on its own  
(47 years since Denning!)

• It might come along for the ride, 
if databases shift

• And/or be basis of modelling:

• Consistency, Availability,
Retention, Residency,
Provenance ... lots of stuff!

• Cornell projects & alumni already
explored several of these:

• Fabric, Qimp, MixT, ...

Or ... maybe not?
• I may be wrong about how tech

adoption works

• I may be wrong about how ripe
databases are for an overhaul

• This is just a hunch / talk idea

• Maybe I just read some
database papers and books
and got too excited!

• Please don't blame me for
sending you on wild research
goose-chase!

https://commons.wikimedia.org/wiki/File:Anser_anser_1_(Piotr_Kuczynski).jpg CC-BY-SA 3.0

Fini

This talk is CC-BY-SA 4.0 because of the wide variety 
of amusing images I used with CC-SA licenses

