
50 Years in Formal World:
Mainstream Computing's

Mirror Universe

Fall 2023

Introduction

Hello!

• Excited!

• Invited by professor-friends

• Random talk

• Half history, half tech

• Not on your exam

• Fun? Maybe interesting?

Introduction

Who am I?

• Industrial programmer

• Non academic

• Rust initiator

• Long ago

• Unrelated to Tony Hoare

• Photos!

Turing Award Winner 
Tony Hoare 

Accepting His 
Turing Award 

1980

Me and my dad,

who is not 
Tony Hoare

1982

Introduction

Let's begin with
an interesting quote

Introduction

Edsger Dĳkstra

Introduction

???

Introduction

??? protected from
testing programs ???

Introduction

Mirror universe

• Makes sense

• In "formal world"

• Today's topic!

https://flickr.com/photos/klauswessel/36403982703 - CC BY-NC 2.0

Introduction

Formal World
runs parallel to mainstream

• Branched from mainstream

• 50 years ago

• Adjacent

• Interacts!

• Weird

• Challenging

• Science fiction

https://flickr.com/photos/82601786@N03/25312789653/ - CC BY-NC-SA 2.0

Introduction

Formal world's
fundamental premise

• 100% correctness

• Zero bugs

• Don't run, don't test: prove

• Full state-space

• Via formal logic

Introduction

Major formal world sites
• France: INRIA, ENS, Paris 7, l'X

• UK: Edinburgh, Oxford, Cambridge,
Manchester

• Sweden: Chalmers, Stockholm, KTH

• Netherlands: CWI, TU Eindhoven

• Denmark: DTU, Aalborg

• Germany: MPI Saarland, TU Munich

• Switzerland: ETH Zurich, EPFL

• Israel: Technion, Tel Aviv

• USA: Cornell, CMU, Stanford/SRI, Austin,
Iowa, Berkeley, MIT; Intel, IBM, MSR

https://flickr.com/photos/nazgjunk/3295100356 - CC BY-NC 2.0

Introduction

This talk
• History of split

• Context, development

• Situation today

• Tools and techniques

• Informed Choice

• Cornell

• Faculty

• Your future

https://flickr.com/photos/hazael/2783985259 - CC BY-NC 2.0

Introduction

Caveats
• Outsider

• Biased and wrong

• Many slides

• No time for Q&A

• Some fairly dense

• Download later

• Not on exam
https://flickr.com/photos/acetonic/15154908813 - CC BY-NC-SA 2.0

Introduction

Part 1
Origins

Part 1.1
The world of computing

just before the split

50 years ago: 1973
• Computing ~25 years old

• US and Europe

• Well established

• Recognizable!

• Not so long ago

• "Less than one career"

• Robert Constable professor

• Dexter Kozen undergrad
https://commons.wikimedia.org/wiki/File:Supercomputer_NSA-IBM360_85.jpg

1.1 computing before the split

1973 Hardware

• Discrete transistors!

• New: integrated circuits

• 8008, ancestor of x86-64

• Too puny

• Moore's law year one

https://commons.wikimedia.org/wiki/File:KL_Intel_C8008-1.jpg - CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:KA10_mod_end.jpg - CC BY-SA 2.5

1.1 computing before the split

1973 Software

• Unix, grep

• Version control systems

• Relational databases

• Hypertext, early GUIs

• Video games

1.1 computing before the split

1973 Languages
• C

• Smalltalk

• ML

• CLU

• Prolog

• 20 years of other HLLs:
FORTRAN, COBOL, ALGOL,
LISP, Simula, PL/I, etc.

1.1 computing before the split

1973 Networking

• Proto-internets: ARPAnet,
CYCLADES

• Ethernet

• "Timesharing" (DTSS, PLATO)

• Online culture, games, chat

1.1 computing before the split

1973 AI

• 17 years old!

• Big university labs

• Symbolic, deductive logic

• Neural networks sidelined

• Another story

https://commons.wikimedia.org/wiki/File:SRI_Shakey_with_callouts.jpg CC-BY-SA 3.0

1.1 computing before the split

1973 Government
• "Military-industrial complex"

• Space race

• Missile defence

• Vietnam counter-insurgency

• AI, "human augmentation"

• Declining spending

• Stirring neoliberalism

1.1 computing before the split

1973 Business
• Century-old regulated monopolies: 

• AT&T: "the phone company"

• 82% of all phones, $22bn
revenue, >1m employees 

• IBM: "the computer company"

• 70% of all computers, $8bn
revenue, >250k employees

1.1 computing before the split

1973 Mainstream computing:
Institutional

• Computers require institutions

• Programming quite serious

• 2000 lb machine, $100,000

• Add 8K of RAM for $50,000!

https://commons.wikimedia.org/wiki/File:PDP-10_1090.jpg CC-BY-SA 3.0

1.1 computing before the split

Part 1.2
Causes and emergence

of the split

Logic-for-AI project
running into trouble

• Disappointments

• Many failed projects

• NP-complete class found

• 1973-4: funding cut

• "AI winter"

• Idle logic talent

https://openlibrary.org/books/OL5079241M/Artificial_intelligence_a_paper_symposium.

1.2 causes of the split

Logic of Programming
making better headway

• Strachey, Scott, Kahn, Berry:

• Logical semantics of PLs

• Boyer, Moore, Plotkin, Milner:

• mechanized FP logics

• ML born here, in LCF system

• 1973 Dijkstra predicate-
transformer semantics:

• mechanized imperative logic

https://apps.dtic.mil/sti/pdfs/AD0785072.pdf

1.2 causes of the split

Logic as Types
blossoming

• 1967 de Bruijn & 1969 Howard
extend Curry's link: natural
deduction is lambda calculus 
 
 theorem ↔ type 
 proof ↔ program

• 1972 Girard & 1974 Reynolds:
2nd order logic is typed
polymorphic lambda calculus 
("System F")

• 1973 Martin-Löf dependent
type theory, math foundations

https://doi.org/10.1016/S0049-237X(08)71945-1

1.2 causes of the split

Frustration building software, talk
of "Software Engineering"

• 1968 NATO "Software Crisis"
conference

• Software lousy

• Late

• Expensive

• Buggy

• Hard to maintain

• Need "Software Engineering"
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

1.2 causes of the split

Algol 68 Rift
• IFIP 2.1 Algol committee

• Dissenting Minority Report: 
 
new languages aren't enough 
to solve the software crisis

• Break in community: IFIP 2.3

• "Programming methodology",
proofs and correctness

• later "formal methods"
https://dl.acm.org/doi/10.5555/1061500.1061502

1.2 causes of the split

Formation of IFIP 2.3
• Leading lights of 1970s academic CS

• Several Cornell folks!

• Invite-only, no goal, sharing ideas

• Kept meeting for 50 years!

1.2 causes of the split

Part 2
Divergence

Part 2.1
50 years of changes

in the world of computing

Hardware Changes

• Moore's law

• 1973's 8008: 3k transistors

• 2023's M2: 20b transistors

• By hand up to ~200k!

• Cheap, plentiful computers

https://assets.ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png CC-BY 4.0

2.1 changes in computing

Software Changes
• Mass market of software

• For every occasion

• Work

• Leisure

• Learning

• Communicating

• Massive oversupply

https://www.flickr.com/photos/williamhook/4742869256/ CC-BY 2.0

2.1 changes in computing

Language Changes
• Ousterhout dichotomy: 

"systems" vs. "scripting"

• Systems: C/C++

• Speed above all

• Scripting: VB, Python, JS

• Ease of use above all

• Neither prioritize correctness

2.1 changes in computing

Networking Changes
• BBSs, private systems

(CompuServe, AOL)

• CCITT/ITU (telcos) "OSI" data
network: not internet!

• Internet wins

• Nice briefly, then nasty

• 24/7 attacks, organized crime

• "Cyber" now a military term
https://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg CC-BY 2.5

2.1 changes in computing

AI Changes
• Waves of hype, despair

• Neural nets win

• Unclear relevance to formal

• Maybe safety critical?

• Maybe hard to verify?

• Maybe helps verify?

• Won't discuss more, no time

https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png CC-BY-SA 4.0

2.1 changes in computing

Government Changes
• Neoliberalism: deregulation,

deindustrialization, IP focus

• More Military-industrial complex:
Cold War, Internet, War on Terror

• Western panic over Japan

• MITI VLSI, "5th gen computer"

• DARPA VLSI, VHDL projects

• US hardware-design firms

• Europe: Alvey, ESPRIT

2.1 changes in computing

Business Changes
• 70s antitrust

• AT&T: no computers, breakup

• Ubiquitous UNIX

• IBM: unbundle software, clones

• Ubiquitous DOS

• Broad, cheap computer market

• 80s antitrust: keep prices low!

Typical ad in Byte Magazine, November 1985

2.1 changes in computing

Mainstream computing
changes: becoming personal

• Personal computers

• Everyone gets one

• Software made by and for
individuals

• Mass market much larger than
"institutional era"

https://commons.wikimedia.org/wiki/File:Students_in_a_computer_lab.jpg CC-BY 2.0

2.1 changes in computing

Unfortunately, personal
(mainstream) software

was not very formal

Part 2.2
50 years of rejection

Formal world made
several wrong bets

• Wrong assumptions about
software verification:

• Plausible

• Tractable

• Tolerable

• Necessary

• Wrong at least for mainstream

2.2 mainstream rejection of formal world

Verification: implausible
• Software exploratory

• No spec

• "Try stuff and iterate"

• Personal computers, casual,
cheap, mass programming

• Self-taught coders

• No training or interest in
formal logic, proof

https://commons.wikimedia.org/wiki/File:Waverly_learns_to_hack.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world

Verification: intractable

• Hard: mutable aliased state

• Mainstream PLs full of it!

• Worse with threads!

• Hard: big programs

• Mainstream programs huge

• GUIs, feature creep

https://commons.wikimedia.org/wiki/File:Eternal_clock.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world

Verification: intolerable
• Two software markets

• "Software as overhead":
platforms, enterprise

• "Software as commodity":
applications, games

• Neither values quality:
minimize cost

• Verification = 10-100x cost!

https://www.flickr.com/photos/50128414@N05/5684850240 CC-BY 2.0

2.2 mainstream rejection of formal world

Verification: unnecessary
• 1976 Copyright law: software is

"work of literature"

• No warranty, no liability

• User learned helplessness

• Software engineering

• High level PLs, types

• Tests

• Version control

• Continuous field updates
https://commons.wikimedia.org/wiki/File: 

COROS.PACE.2.GPS.watch.updating.firmware.v.3.02.0.on.2023-08-29.jpg CC-BY-SA 4.0

2.2 mainstream rejection of formal world

Case study: Ada

• US military solution to crisis

• Not even "formal methods", 
just "high reliability"

• Little uptake: expensive tools,
complex, rigid, niche market

• Mandated 1991, repealed 1997

• "Off-the-shelf" C/C++ won

2.2 mainstream rejection of formal world

Ok that sounds bad!
Is anything verified?

Yes!

Part 2.3
50 years of adoption

Formal world has some
areas of successful adoption

• Hardware verification

• Safety-critical systems

• Telecoms & networking

• Operating systems & drivers

• Cryptographic algorithms

• Programming languages
https://www.flickr.com/photos/stopbits/3777015632 CC-BY 2.0

2.3 formal world success outside mainstream software

How?

Verification assumptions
were not always wrong

• Recall 4 assumptions:

• Plausible

• Tractable

• Tolerable

• Necessary

• Sometimes they hold

2.3 formal world success outside mainstream software

Verification: plausible

• Well-defined problems

• Already math or logic

• Process algebras, FSMs,
dataflow networks, etc.

• Professionals trained in
math, engineering https://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed_new.svg CC-BY-SA 3.0

2.3 formal world success outside mainstream software

Verification: tractable

• Small systems

• Inherently small

• Or modular

• Or small approximations

• Finite-state

• Or finite approximations

https://commons.wikimedia.org/wiki/File:Intel_Pentium_A80501_66_SX950-layout.jpg CC BY-SA 3.0

2.3 formal world success outside mainstream software

Verification: tolerable

• Quality matters sometimes

• Mistakes very expensive

• Big testing budgets already

• Formal may be cheaper!

https://commons.wikimedia.org/wiki/File:Clean_room.jpg

2.3 formal world success outside mainstream software

Verification: necessary

• Regulations

• Or warranties

• Governments may dictate

• Industrial policy

• National security

• Public safety

2.3 formal world success outside mainstream software

Part 3
Results

Part 3.1
50 years of proofs

Hardware
("EDA" electronic design automation)
• IBM, Intel, AMD, Arm, NXP,

Qualcomm, Apple, STMicro,
NVIDIA, Sun, HP

• Many tools

• Academic (Murphi, NuSMV)

• Industrial (Synopsys, Cadence)

• Hardware description languages
(Verilog, VHDL)

• Spec languages (IBM Sugar,
Motorola CBV, Intel ForSpec, VHDL
Assertions, SystemVerilog SVA,
Synopsys OVA)

3.1 things that sometimes get proven correct

Safety-critical
• Flight control: Airbus, Boeing,

Dassault, Rockwell, Honeywell

• Also NASA & ESA

• Metro rail control: Alstom, Thales,
Siemens (Singapore, Paris, Sao
Paulo, Ankara, Hong Kong)

• Flood dam control: Rotterdam

• Nuclear power plant control:
France, China, Korea, USA

• Many tools: B, SCADE, PVS,
Astrée, Polyspace, NuSMV

https://flickr.com/photos/hugokernel/5027492067 - CC BY-NC-SA 2.0

https://commons.wikimedia.org/wiki/File:Effet_SACEM_en_gare_d%27Auber_(RER_A)_par_Cramos.jpg 
 CC BY-SA 3.0

3.1 things that sometimes get proven correct

Telecoms & Networking
• OSI protocols in LOTOS

• AT&T phone net

• 5ESS switch, CDMA BSS

• CCITT SDL, SPIN, VeriSoft

• New SDN projects

• OpenFlow, P4, Frenetic/
NetKAT (Cornell!)

https://flickr.com/photos/kait_snoddy/2350469445 - CC BY-NC-SA 2.0

3.1 things that sometimes get proven correct

OS Drivers
• Internet nightmare

• Microsoft bad press

• "Trustworthy Computing" 
initiative (early 2000s)

• SLAM project 
Static Driver Verifier

• Linux Driver Verification,
DDVerify, Avinux

• BLAST, CPAChecker,
SATABS, CBMC

3.1 things that sometimes get proven correct

Cryptography
• Verified algorithms:

• AES, SHA256, Curve25519

• Signal protocol

• Verified implementations

• Amazon s2n TLS stack

• MSR & INRIA Everest project

• EasyCrypt, ProVerif, SAW,
Cryptol, FStar and KaRaMeL
(OCaml based)

3.1 things that sometimes get proven correct

Interactive proof heroism
• Interactive proofs

• Not automatic

• Labor intensive

• Arbitrarily deep properties

• Some heroic proofs

• seL4: real-time microkernel

• CompCert: C compiler

• CakeML: ML compiler

3.1 things that sometimes get proven correct

Also interactive proofs are
fairly big in academic PL?

• Language designs

• Subtle properties

• Pen-and-paper proofs

• 2005 "POPLMark challenge"

• Now "mechanized" proofs

• Sadly not automatic

https://www.seas.upenn.edu/~plclub/poplmark/poplmark.pdf

3.1 things that sometimes get proven correct

How did these proofs
happen?

Part 3.2
50 years of tools

Tools!
• Lots of tools

• Deductive Verifiers

• Abstract interpreters

• Model checkers

• Interactive provers

• Automated provers

• Many others besides...
https://commons.wikimedia.org/wiki/File:20060513_toolbox.jpg CC-BY-SA 2.5

3.2 tools for proving things correct

Deductive verifiers
("design by contract" checkers)
• Build verification conditions (VCs)

from predicates and program logics

• Preconditions, postconditions,
invariants (implicit or explicit)

• Prove VCs however possible

• Ideally: mostly-automatic

• Reality: semi-manually

• Same as 1970s

• Extensions to many PLs (JML,
SPARK, Frama-C) or basis of PL
designs (Dafny, Whiley, Spec#)

3.2 tools for proving things correct

Abstract interpreters
• Check local properties in sound

over-approximation of code

• arithmetic, nullptr, assertions

• Automatic, fast, but imprecise

• False alarms

• Big in safety-critical

• Astrée, Polyspace, IKOS

• Some more-general software

• Facebook Infer, MIRAI

3.2 tools for proving things correct

https://ntrs.nasa.gov/citations/20190032528

Model checkers
• Check state transition function is

logical model of spec formula

• Temporal: "always, eventually"

• Often concurrency friendly

• Automatic but expensive

• Explicit: SPIN, TLA+, CADP,
Murphi, DiVinE

• Symbolic: NuSMV, BLAST,
SLAM, CBMC

• Big in hardware, telecoms

3.2 tools for proving things correct

Interactive provers
• Arbitrarily deep properties

• Labor intensive

• Like a very confusing IDE

• Dependent type based

• CTT (NuPRL -- Cornell!)

• CoC/CIC (Coq, Lean)

• UTT (Agda)

• QTT (Idris)

• Higher-order logic based

• Isabelle/HOL, HOL4

3.2 tools for proving things correct

Automated provers
• Decide (semi-)decidable logic

• Fast

• Subroutines for other tools

• SAT & SMT solvers

• Z3, CVC, Yices, Alt-Ergo

• FOL provers

• E, Vampire, SPASS, Prover9

3.2 tools for proving things correct

Part 3.3
50 years of theory

Theory has improved

• Big improvements

• So much theory

• Big delays

• 30+ years sometimes

https://www.flickr.com/photos/jurvetson/128239619/ - CC-BY 2.0

3.3 theoretical developments

Automatic provers improved
an incredible amount

• FOL superposition early 90s

• 20 years after KB

• Heuristic SAT revolution
(GRASP, Chaff) late 90s

• 35 years after DPLL

• SMT solvers: SAT solvers +
theory decision procedures https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

3.3 theoretical developments

Model checkers improved
an incredible amount

• Partial-order reduction,
BDDs, SAT-based BMC,
CEGAR, IMC, IC3/PDR

• Concrete-to-symbolic

• Eager-to-lazy

• Finite-to-infinite

• Leveraged improvements
in automatic provers

https://arieg.bitbucket.io/pdf/ModelChecking.pdf

3.3 theoretical developments

Program logics got better at
mutable aliased state

and concurrency

• Separation logic

• 33 years after Hoare logic

• Concurrent separation logic

• 31 years after Owicki-Gries

• Linear logic

• Tasty hybrids (eg. Rust)

https://ilyasergey.net/assets/other/CSL-Family-Tree.pdf

https://cacm.acm.org/magazines/2019/2/234356-separation-logic/fulltext

3.3 theoretical developments

Interactive provers improved
• Dependent-type extensions:

• Universe hierarchies

• (Co-)Inductive types

• Dependent patterns

• Higher order unification

• Implicit arguments,
typeclasses

• Reflection, automation

• Awkward segue to .. ML
https://doi.org/10.1016/0890-5401(88)90005-3

3.3 theoretical developments

Part 3.4
50 years of ML

(bonus)

ML is the C of
formal world

• ML dialects (OCaml) common

• Implementation language

• Spec-and-proof language

• Object-of-study language

• All of the above, at once!

3.4 ML is great

Why ML?
• Small, clean, expressive

• Helps write complex tools

• Easy to subset or extend

• Correspondence to logic

• Type and proof terms

• Has a formal semantics

• Easy to study in these tools

3.4 ML is great

Cyclone (and Rust)

• Idea: "ML systems language"

• Help mainstream software

• Bring safety / correctness

• Or: adapt ML to systems niche

• Affine types, borrowing

• Formal-world ideas

http://dx.doi.org/10.1145/2663171.2663188

https://www.cs.cornell.edu/Projects/cyclone/papers/cyclone-safety.pdf

3.4 ML is great

50 year tech-transfer
from formal world?

• Today: 2023

• T-10: 2013-ish, Rust (Mozilla)

• T-20: 2003-ish, Cyclone (AT&T, Cornell)

• T-30: 1993-ish, OCaml (INRIA)

• T-40: 1983-ish, SML/NJ (AT&T)

• T-50: 1973-ish, ML (Edinburgh)

• (dates fudged, for drama)

3.4 ML is great

Conclusion

Prospects
• Formal world fairly niche

• Maybe forever

• Mass programming

• Proof is hard

• Often nothing to prove

• Niche will survive

• Tools never better

• Relevance never higher

https://commons.wikimedia.org/wiki/File:Leitstand_2.jpg - CC-BY-SA 3.0

Conclusion

Never more active
• Many conferences

• CAV, IJCAR, CADE, FM,
FMCAD, VMCAI, TACAS,
ILP, ITP, SAT, ICLP, LICS,
FLoC ...

• Many with competitions!

• SMT-COMP, SV-COMP,
HCVC, COCO, QBF, TPTP,
MCC, ...

• Some with Cornell faculty as
PC members (or chairs!)

Alexandra Silva at FLoC 2022 
https://www.floc2022.org/pictures

Conclusion

Your course, and Cornell
• Your course is an appetizer

• Just learning OCaml

• Unit on (manual) proof

• Curry-Howard is discussed!

• But Cornell is a "formal world site"

• 40+ year NuPRL project

• Search "formal", "logic" or
"verification" on faculty page

• Maybe explore?
https://www.cs.cornell.edu/people/faculty

Conclusion

Either way, let's call it a day

• Hopefully amusing or educational

• Fun for me to put talk together

• Thanks for your time

• Good luck on exams!

https://flickr.com/photos/morbug/3546165031 - CC-BY-NC 3.0

Conclusion

Fini

This talk is CC-BY-SA 4.0 because of the wide variety 
of amusing images I used with CC-SA licenses

