50 Years in Formal World:
Mainstream Computing's
Mirror Universe

Fall 2023

Introduction

Introduction

Hello!

e Excited!

* |nvited by professor-friends
e Random talk

e Half history, half tech
* Not on your exam

e Fun? Maybe interesting?

Introduction

Who am 1?

e |[ndustrial programmer
 Non academic

* Rust initiator
e | ong ago

 Unrelated to Tony Hoare

e Photos!

- Turing Award Winner
Tony Hoare
Accepting His
Turing Award
1980

Me and my dad,

who is not

Tony Hoare
1982

Introduction

Let's begin with
an interesting quote

Introduction

Edsger Dijkstra

- .

w?ln c.“:j) n

.

order to drive homc the meSSOje '}%a)‘ H’\vs

'm'}rocluc*'oru\ Prosro\mw\'mj course (s lorimc.n'\?

. Course In 'por‘mc-) mo«#\emo:)ics, we see Yo i
}ha\‘ the Proaf‘amm'mj \anjuage N c\v\e.s\'ion
has Q_o_}' neen imP\emerﬂed on Com})u\s S0 Hﬂc}
shudends are prolected ffom the dtemplotion
o test their

Introduction

227

Introduction

?7?7? protected from
testing programs ???

Introduction

Mirror univers

T

. 3
v v
> .
b oo A
e et £ 40
Yt 0 I
5

e Makes sense

e |n "formal world"

e Today's topic!

https://flickr.com/photos/klauswessel/36403982703 - CC BY-NC 2.0

Introduction

Formal World
runs parallel to mainstream

e Branched from mainstream

e 50 years ago

* Adjacent
* |nteracts!
e Weird
e Challenging

e Science fiction

N
- P N e = S
= ST LR -,
Sty W
SHR T -
>

https://flickr.com/photos/82601786@N03/25312789653/ - CC BY-NC-SA 2.0

Introduction

Formal world's
fundamental premise

e 100% correctness
e Zero bugs

e Don't run, don't test: prove

e Full state-space

e Via formal logic

Introduction

Major formal world sites

e France: INRIA, ENS, Paris 7, I'X

» UK: Edinburgh, Oxford, Cambridge, .
Manchester ' .

e Sweden: Chalmers, Stockholm, KTH

e Netherlands: CWI, TU Eindhoven

« Denmark: DTU, Aalborg e
* Germany: MPI Saarland, TU Munich | g __

e Switzerland: ETH Zurich, EPFL

e |srael: Technion, Tel Aviv

e USA: Cornell, CMU, Stanford/SRI, Austin,
lowa, Berkeley, MIT; Intel, IBM, MSR

https://flickr.com/photos/nazgjunk/3295100356 - CC BY-NC 2.0

Introduction

This talk

e History of split

e Context, development

e Situation today

e Tools and techniques

e |Informed Choice

e Cornell

 Faculty

https://flickr.com/photos/hazael/2783985259 - CC BY-NC 2.0

e Your future

Introduction

Caveats

e Qutsider

e Biased and wrong

* Many slides
* No time for Q&A
e Some fairly dense

e Download later

e Not on exam

https://flickr.com/photos/acetonic/15154908813 - CC BY-NC-SA 2.0

Part 1
Origins

Part 1.1
The world of computing
just before the split

1.1 computing before the split

50 years ago:

Computing ~25 years old

US and Europe

Well established

e Recognizable!

Not so long ago

e "L ess than one career”

e Robert Constable professor

e Dexter Kozen undergrad

i.‘_-, -
| =

'.V‘v"“ 4 - e—

‘hlh_"""'- -‘)’\“'
e e I T LA L

https://commons.wikimedia.org/wiki/File:Supercomputer_NSA-IBM360_85.jpg

1.1 computing before the split

1973 Hardware

e Discrete transistors!

* New: integrated circuits

e 8008, ancestor of x86-64
e Too puny

e Moore's law year one

https://commons.wikimedia.org/wiki/File:KL_Intel_C8008-1.jpg - CC BY-SA 4.0

1.1 computing before the split

1973 Software

Unix, grep

Version control systems
Relational databases
Hypertext, early GUIs

Video games

Ready:

select file names with the mouse
Red-Copy, Yel-Copy /Rename, Blue-Delete
Click 'Start' to execute file name commands

832

listed: 60
Files selected: 0 Delete: 0
Copy /Rename: 0 Copy: 0

DP0: 8ysDir.> **

BEGINNING ~~
1012-AstroRoids. Boot,
Anonymous,. 1,
BattleShip.er.
BattleShip RUN.
BlackJack . RUN.
BuildKal.cm.
Calciources.dm.
Calculator RUN.
Chess.log,
Chess.run.
Com.Cm.,
CompileKal.cm.
CRTTEST.RUN.
DIMT.boot,
EdsBuild.run.
empress.run,
Executive.Run.

¥.run,
galaxian.boot,

GoFont. AL,
Invaders.Run.
junk.
junk.press.

Kineticd.RUN.
LoadKal.cm.
MasterMind RUN,
maze.run,

Mesa. Typescript.
Missile.run.,
NEPTUNE.RUN.
othello.run.
Pinball-easy.run.
POLYGONS.RUN.

Pages: 0

Files listed: 0

Files selected: 0
v /Rename: 0

Delete: 0

Copy:

0

1.1 computing before the split

1973 Languages

C
Smalltalk
ML

CLU
Prolog

20 years of other HLLs:
FORTRAN, COBOL, ALGOL,
LISP, Simula, PL/I, etc.

PROGRAMMING
LANGUAGE

Brian W. Kernighan ¢ Dennis M. Ritchie

1.1 computing before the split

1973 Networkin

ARPA: NETWORK, LOGICAL MAP, MAY 1973

Proto-internets: ARPAnNet,
CYCLADES

Ethernet

"Timesharing" (DTSS, PLATO

Online culture, games, chat

xerox (MAXC
316
IMP

TIP

HAWAI AMES

THE DARTMOUTH
EDUCATIONAL
TIME-SHARING NETWORK

POP-0) POP10)

UTAH ILLINOIS MIT

3 IMP
: H-645
T*-2 @ cca
PDP-10
LLVCOL:V

TSP

RADC PDP-10,

PDP-10 m TIP}— IMP

GWe

goco CARNEGIE
== PDP
POPI0 m
usc

TIP qa:z:’ @ @
BELVOIR
ooM@ 316
iMP
370/145) soac
TIP
MITRE

1.1 computing before the split

1973 Al

T — B
IANTENNA FOR '
S RADIO LINK

e 17 years old! ¥ ‘i
\ LEVISION

CAMERA

RANGE

* Big university labs]")
: 1%1,

e Symbolic, deductive logic T

LIC | g

* Neural networks sidelined i \F
it DETiC\T\OR M

e Another story \

- —

CASTER
WHEEL

DRIVE o DRIVE
MOTOR WHEEL

https://commons.wikimedia.org/wiki/File:SRI_Shakey_with_callouts.jpg CC-BY-SA 3.0

1.1 computing before the split

1973 Government

e "Military-industrial complex”
e Space race

e Missile defence

e \ietham counter-insurgency

e Al, "human augmentation”
* Declining spending

e Stirring neoliberalism

1.1 computing before the split

1973 Business

e Century-old regulated monopolies:

e AT&T: "the phone company"

e 82% of all phones, $22bn
revenue, >1m employees

e |BM: "the computer company”

e 70% of all computers, $8bn
revenue, >250k employees

1.1 computing before the split

1973 Mainstream computing:
Institutional

e Computers require institutions
* Programming quite serious
e 2000 Ib machine, $100,000

e Add 8K of RAM for $50,000!

https://commons.wikimedia.org/wiki/File:PDP-10_1090.jpg CC-BY-SA 3.0

Part 1.2
Causes and emergence
of the split

Logic-for-Al project
running into trouble

e Disappointments

 Many failed projects

e NP-complete class found
e 1973-4: funding cut

e "Al winter"

e |dle logic talent

https://openlibrary.org/books/OL5079241M/Artificial_intelligence_a_paper_symposium.

1.2 causes of the spilit

Logic of Programming
making better headway

_ STANFCRD ARTIFICIAL INTELLIGENCE PROJECT
~ MEMO AIM-169

™\ -STAN-CS-72-288

e Strachey, Scott, Kahn, Berry:

LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTAT ION

* Logical semantics of PLs

AD785072

BY

* Boyer, Moore, Plotkin, Milner: ek

* mechanized FP logics e

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY

* ML born here, in LCF system B
MAY 1972

* 1973 Dijkstra predicate-
. COMPUTER SCIENCE DEPARTMENT
transformer semantics: School of Humanities and Sciences

STANFORD UNIVERSITY

."‘w ’:\ "1." g i
* mechanized imperative logic (A 5

Peproduced by
NATIONAL TECHNICAL

INFORMATION SERVICE
U S Dspartmert of Commerce
Sprngfeld VA 22151

https://apps.dtic.mil/sti/pdfs/AD0785072.pdf

1.2 causes of the spilit

Logic as Types
blossoming

e 1967 de Bruijn & 1969 Howard
extend Curry's link: natural
deduction is lambda calculus

theorem < type

proof < program

e 1972 Girard & 1974 Reynolds:
2nd order logic is typed
polymorphic lambda calculus
("System F")

e 1973 Martin-Lo6f dependent
type theory, math foundations

AN INTUITIONISTIC THEORY OF TYPES:
PREDICATIVE PART

Per MARTIN-LOF

University of Stockholm, Stockholm, Sweden

The theory of types with which we shall be concerned is intended to be
a full scale system for formalizing intuitionistic mathematics as de-
veloped, for example, in the book by Bishop[1]. The language of the
theory is richer than the languages of traditional intuitionistic systems in
permitting proofs to appear as parts of propositions so that the proposi-
tions of the theory can express properties of proofs (and not only
individuals, like in first order predicate logic). This makes it possible to
strengthen the axioms for existence, disjunction, absurdity and identity.
In the case of existence, this possibility seems first to have been indicated
by Howard [10], whose proposed axioms are special cases of the existen-
tial elimination rule of the present theory. Furthermore, there are axioms
for universes (in the sense of category theory) which link the generation
of objects and types and play somewhat the same role for the present
theory as does the replacement axiom for Zermelo—Fraenkel set theory:
They also make the theory adequate for the formalization of certain
constructions in category theory, like the construction of the category of
all small categories.

An earlier, not yet conclusive, attempt at formulating a theory of this
kind was made by Scott{19]. Also related, although less closely, are the
type and logic free theories of constructions of Kreisel[12, 13] and
Goodman [8].

In its first version, the present theory was based on the strongly
impredicative axiom that there is a type of all types whatsoever, in
symbols, V € V, which is at the same time a type and an object of that
type. This axiom had to be abandoned, however, after it had been shown

https://doi.org/10.1016/S0049-237X(08)71945-1

1.2 causes of the spilit

Frustration building software, talk
of "Software Engineering"”

e 1968 NATO "Software Crisis" SOFTWARE ENGINEERING

conference

e Software lousy

Report on a conference sponsored by the

e | ate NATO SCIENCE COMMITTEE

Garmisch, Germany, 7th to 11th October 1968

e Expensive

) Buggy Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

e Hard to maintain

Editors: Peter Naur and Brian Randell

e Need "Software Engineering"

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

1.2 causes of the spilit

Algol 68 Rift

e [FIP 2.1 Algol committee

Now the language itself, which should be judged, among other things,
as a language, in which to compose programs. Considered as such, a pro-
gramming language implies a conception of the programmer's task. We

' 1 ' ' . recognise that over the last decade the processing power of commonly
¢ Dlssentlng Mlnorlty Report- available machines has grown tremendously and tha't; society has increased
its ambition in their application in proportion to this growth. As a
result the programmer of today and tomorrow, finding his task in the
field of tension between available equipment and desired applications,

r]GB\A/ IEir1(1LJEiCJEBE; Eirear]'t EBTT()[J(]?] finds himself faced with tasks of completely different and still growing

scope and scale. More than ever it will be required from an adequate

. e programming tool that it assists, by structure, the programmer in the

tO SOIVe the SOftware CFISIS most difficult aspects of his job, viz. in the reliable creation of
sophisticated programs. In this respect we fail to see how the language
proposed here is a significant step forward: on the contrary, we feel

that its implicit view of the programmer's task is very much the same as,
say, ten years ago. This forces upon us the conclusion that, regarded as

® Break in Community: IFIP 2.3 a programming tool, the language must be regarded as obsolete.

The present minority report has been written by us because if we had
not done so, we would have forsaken our professional responsibility to-
wards the computing community. We therefore propose that this Report on
the Algorithmic Language ALGOL 68 should not be published under IFIP spon-

’ Programmlng methOdOIOQy" sorship. If it is so published, we recommend that this "minority report"
prOOfS and Correctness be included in the publication.

Signed by: DIJKSTRA, DUNCAN, GARWICK, HOARE, RANDELL,
SEEGMUELLER, TURSKI, WOODGER.

o |ater "formal methods"

https://dl.acm.org/doi/10.5555/1061500.1061502

Formation of IFIP

Jean-Raymond Abrial

Emeritus

Ralph-Johan Back

Dines Bjorner Emeritus
Per Brinch Hansen (d.
2007)

Manfred Broy

Rod Burstall Emeritus
Michael Butler

William R. Cook (d.
2022)

Patrick Cousot

Ole-Johan Dahl (d. 2002)

1.2 causes of the spilit

* Leading lights of 1970s academic CS

e Several Cornell folks!

* Invite-only, no goal, sharing ideas

* Kept meeting for 50 years!

Edsger W. Dijkstra (d.
2002)

Sophia Drossopoulou
David Gries Emeritus
John Guttag Emeritus
Eric C. R. Hehner
Emeritus

Tony Hoare

Jim Horning (d. 2013)
Daniel Jackson
Michael Jackson

Cliff Jones

Shriram Krishnamurthi
Emeritus

Butler W. Lampson
Emeritus

Gary T. Leavens
Doug Mcllroy Emeritus
George H. Mealy (d.
2010)

Bertrand Meyer
Jayadev Misra

Carroll Morgan

Peter Naur (d. 2016)
Greg Nelson (d. 2015)

Susan Owicki Emeritus
David Lorge Parnas
Emeritus

Benjamin C. Pierce
Emeritus

George Radin (d. 2013)
Brian Randell Emeritus
John C. Reynolds (d.
2013)

Douglas T. Ross (d.
2007)

Fred B. Schneider
Emeritus

Natarajan Shankar
Michel Sintzoff (d. 2010)
Jan L. A. van de
Snepscheut (d. 1994)
Christopher Strachey (d.
1975)

Warren Teitelman
Emeritus

Emina Torlak

Jim Woodcock

Niklaus Wirth Emeritus
Mike Woodger Emeritus

Pamela Zave

Part 2
Divergence

Part 2.1
50 years of changes
In the world of computing

2.1 changes in computing

Hardware Changes

's |
o M OO re S aW Moore’s Law: The number of transistors on microchips doubles every lwo vears [STSREHE
Moore ribes the cal regularity that the number of to egrats es approximately every t ‘ in Data
I aspecl of L |) Ie ne § e[i pule

i m
Transistor count

°°°

* 1973's 8008: 3k transistors RN

e 888, 8,
got,°

°00° ®

8

<
A4
° °§ <
L 4
o ©

e 2023's M2: 20b transistors
* By hand up to ~200k!

* Cheap, plentiful computers

https://assets.ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png CC-BY 4.0

2.1 changes in computing

Software Changes

* Mass market of software
* For every occasion

e Work

e Leisure

e | earning

e Communicating

 Massive oversupply

A:Al: 'ENMP

Range Copy Move File Print Graph Data System Quit

Global Insert Delete Column Erase Titles Window Status Page Hide

A

A
NP NANE DEPTND JOB YEARS

1 SALARY BOHUS
2 1777 Azibad 40808 Sales 2 40888 180688
3 81964 Brown 6808 Sales 3 45688 18688
) 6688 Mgr 4 75888 25080
7688 Mgr 3 65888 25080
3088 Mgr 5 65808 280880
AL 7880 Sales 2 450088 186688
1888 President 8 150808 1080688
30008 Sales 3 40868 18688
3008 Sales 2 36688 58688
4888 Mgr 5 70888 25080
1888 Admin 8 35808 ---
5808 Mgr K] 756088 250088
1688 Mgr 5 088A8 25080
4808 Sales 4

https://www.flickr.com/photos/williamhook/4742869256/ CC-BY 2.0

IE

2.1 changes in computing

Language Changes

Ousterhout dichotomy:
'systems” vs. "scripting”

Systems: C/C++

e Speed above all

Scripting: VB, Python, JS

e Ease of use above all

Neither prioritize correctness

Margaret A. ELLIS
Bjarne STROUSTRUP

THE ANNOTATED

| File

| B[4] =]

Procedures
Project

Toolbox
Data Manager
Report Designer

Sub cmdRemove_Click ()
Dim Ind As Integer
Ind = 1stClient.ListIndex
If Ind >= 8 Then ' Make sure list
1stClient.Removeltem Ind ' Remove it fro
1blDisplay.Caption = lstClient.ListCount ' Display numbe
Else
Beep * Should never occur, because Remove is always disa

2.1 changes in computing

Networking Changes

BBSs, private systems
(CompuServe, AOL)

CCITT/ITU (telcos) "OSI" data
network: not internet!

Internet wins

Nice briefly, then nasty
24/7 attacks, organized crime

"Cyber" now a military term

https://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg CC-BY 2.5

2.1 changes in computing

Al Changes

 Waves of hype, despair

Input layer Hidden layers Output layer

e Neural nets win
e Unclear relevance to formal

 Maybe safety critical?

 Maybe hard to verify?

https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png CC-BY-SA 4.0

 Maybe helps verify?

e \Won't discuss more, no time

2.1 changes in computing

Government Changes

* Neoliberalism: deregulation,
deindustrialization, |P focus

* More Military-industrial complex: THE

Cold War, Internet, War on Terror FlFTH
* \Western panic over Japan eenEHngon

e MITIVLSI, "5th gen computer” 1 ARTIFGIAL INTELLIGENCE AND JARANIS/// /

(COMPUTER CHALLENGE
[0 THE WORLD

e DARPA VLS|, VHDL projects
EDWARD A, FEIGENBAUM

* US hardware-design firms PAMELA McCORDUCK

e Europe: Alvey, ESPRIT

2.1 changes in computing

e /0s antitrust
e AT&T: no computers, breakup
e Ubiquitous UNIX

e |BM: unbundle software, clones

e Ubiquitous DOS

 Broad, cheap computer market

* 80s antitrust: keep prices low!

_* (Optional 6 Slot Expansion Chassis .

Business Changes

srano LIQUIDATION
e —— Retail Value $5000
Save up to 60%

ACP PRICE
NOW ONLY!

*1985°

Color 14" RGB Included
710 Mb Hard Disk

ACP is proud to make this one-time
special offer for a complete computer
* system that is 110% compatible to IBM™.
This is by far the most significant bargain
that we at ACP have offered in our 10 year
history. This system was successfully designed and manufactured to exceed IBM™'s PC in terms
of quality, expansion modularity and capability, aesthetic appearance, and performance.
The system design utilizes the latest in state-of-the-art technology including:
¢ VLSI - Large Scale Integration Circuit Design « High Quality 100 Watt Switching Supply
* Ergonomic CRT Design with Tilt Screen ¢ Complete Integrated System
* Professional Molded Packaging and Design * Microsoft Compatible Mouse Function
The system is not a Taiwan or Korean knock-off. Each component is specifically designed and specified
to meet the highest performance and reliability standards in the industry. It represents the best that
Japanese craftsmen have to offer and you will be equally proud to own one of your own. ACP has
a limited quantity of these systems in several different configurations. IBM™ PC-DOS™ v1.1/2.1, MS-
DOS™ v2.11 and Concurrent v3.1 compatible. We have found no known incompatibility with any IBM™
PC application. Our technical staff has 8.5 Megabytes of various MS-DOS software packages instail-
ed including Lotus 1-2-3 and Flight Simulator, Each system comes complete with a 90 day warranty.

ACP Base System Consists of: : SYSTEM CONFIGURATION | Est IBM List* Your Price
* (1) 360K DD/DS Floppy Disk Drive Base System (see left) PC with

* Mouse with Software SYSTEM A 360K Floppy, Keyboard & Mouse. | $2100.00 599500

* 256K Memory Expandable to 640K [— | Base System (se2 left) phus Add|

on the Motherboard SYSTEM 8 3&07(Fylofa:? éfffe P ‘ $2235.00 51099.00
* Deluxe Keyboard with LEDs
« Serial Port and Parallel Port with Detachable TR/Swhval Base $2575.00 $1399.00

| SYSTEM C | Base System pis 12" Green Monitor

* Color or Monochrome Controller Base System pivs 12 Color Morfor
* 4.T7MHz, 6088 CPU_ SYSTEM D | o Oetachable Thowa Base. | 522500 $1699.00
* 100 Watt Switching Supply w/Fan Base System pus O Monfor, 10VE
s Ao ¥ f wr,
Three Expansion Slots SYSTEM E | . ne and Boct Diegneelics. $5000.00 $1985.00
with Power Su add | Base Systern plus 80 Col. x 25 Line | ..,
oply (a0d $399) | gysTEM F | Dase Sysier NA - §$1299.00

Base System A (as abave) 399500 *Assumes requined agd-n Boards 10 provide sama capacity IBM PC is & vademark of 1BM Carp.

Typical ad in Byte Magazine, November 1985

2.1 changes in computing

Mainstream computing
changes: becoming personal

Personal computers
Everyone gets one

Software made by and for
individuals

Mass market much larger than
"Institutional era”

https://commons.wikimedia.org/wiki/File:Students_in_a_computer_lab.jpg CC-BY 2.0

Unfortunately, personal
(mainstream) software

was not very formal

Part 2.2
50 years of rejection

2.2 mainstream rejection of formal world

Formal world made
several wrong bets

 Wrong assumptions about
software verification:

e Plausible
e Tractable

e Tolerable

* Necessary

 Wrong at least for mainstream

2.2 mainstream rejection of formal world

Verification: implausible

e Software exploratory

e No spec
e "Try stuff and iterate”

e Personal computers, casual,
cheap, mass programming

e Self-taught coders

* No training or interest in
formal logic, proof

https://commons.wikimedia.org/wiki/File:Waverly_learns_to_hack.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world

Verification: intractable

e Hard: mutable aliased state

e Mainstream PLs full of it!
e Worse with threads!

 Hard: big programs

e Mainstream programs huge

e GUIs, feature creep

https://commons.wikimedia.org/wiki/File:Eternal_clock.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world

Verification: intolerable

e Two software markets

e "Software as overhead":
platforms, enterprise

e "Software as commodity":
applications, games

9I,

‘: “ "T“ djﬂa ‘_.: - £
m d:!dﬂ” ,\
'—- F . ’Hzlz! 3

7 i

>
=8 mm

_\". :
Pl ey
— 9 -
e . l
0 g l
. < : ot Ty ,‘;'
- 4 « v
\
- »
] l - s

 Neither values quality: B L,, _
minimize cost A | m :
HY

e Verification = 10-100x cost!

https://www.flickr.com/photos/50128414@N05/5684850240 CC-BY 2.0

2.2 mainstream rejection of formal world

Verification: unnecessary

e 1976 Copyright law: software is
"work of literature”

 No warranty, no liability

e User learned helplessness

e Software engineering
* High level PLs, types
e Jests

e \/ersion control

e Continuous field updates

https://commons.wikimedia.org/wiki/File:
COROS.PACE.2.GPS.watch.updating.firmware.v.3.02.0.0n.2023-08-29.jpg CC-BY-SA 4.0

2.2 mainstream rejection of formal world

Case study: Ada

US military solution to crisis

e Not even "formal methods”,
just "high reliability”

Little uptake: expensive tools,
complex, rigid, niche market

Mandated 1991, repealed 1997

"Off-the-shelf" C/C++ won

Reference Manual for the

Programming Language

ANSI/MIL-STD-1815A-1983

United States Department of Defense

Approved February 17, 1983
American National Standards Institute, Inc.

Ok that sounds bad!
Is anything verified?

Yes!

Part 2.3
50 years of adoption

2.3 formal world success outside mainstream software

Formal world has some
areas of successful adoption

Hardware verification

Safety-critical systems
Telecoms & networking
Operating systems & drivers
Cryptographic algorithms

Programming languages

https://www.flickr.com/photos/stopbits/3777015632 CC-BY 2.0

How?

2.3 formal world success outside mainstream software

Verification assumptions
were not always wrong

* Recall 4 assumptions:
e Plausible
e [ractable
e Jolerable

* Necessary

e Sometimes they hold

2.3 formal world success outside mainstream software

Verification

e \Well-defined problems
e Already math or logic

* Process algebras, FSMs,
dataflow networks, etc.

e Professionals trained in
math, engineering

: plausible

CONNECTISYN (Step 1 of the 3-way-handshake)

(Start) _m S

LISTENI- A
: CLOSEI-

the 3-way-handshake)SYN/SYN+ACK
ay-handshake + LISTEN
A

SYN . RS : i SENDISYN
RECEIVED < SYN/SYN+ACK (simultaneous open)

Data exchange occurs

SYN+ACK/ACK
ESTABLISHED — - .
(Step 3 of the 3-way-handshake)

CLOSE/FIN
CLOSE/FIN

: L
|
FIN/ACK |
FIN WAIT 1 . ! CLOSE WAIT

FIN+ACKIACK : : :
|
ACKI- : o : CLOSEIFIN

: : |

g 3 1

3 : |

i

: |

FIN WAIT 2 : > i LAST ACK
FIN/ACK t
! ACKI-

https://commons.wikimedia.org/wiki/File: Tcp_state_diagram_fixed_new.svg CC-BY-SA 3.0

2.3 formal world success outside mainstream software

Verification: tractable

e Small systems
* |nherently small
e Or modular
e Or small approximations

e Finite-state

= : !
i =
v R T 1 s pos—— - ¥
(i T ' g HOHH i e
r A A T s T e T n bt =i

,A [,’ .,.

e Or finite approximations

- SRRs e W SRRS AN SRES. B8 RGEE BUR(df @R (140010

i # bl | - e
!Ifl.\lﬂ(‘.lmﬂl . — = .a - : =T
3 ' s — REPRLNES -~
: -
2 R o P

{7
=
,
>
1
-

..!

s
e
-
—
-
s
W
—
=
s
-
—-
—
-
e
—
-
-
-
o=
-
-
—
e
-
Ve
-
~
e
-
-
-
—
=
-~
.
-
-~
-
.
-
-
-
-
-
~
-
-
-
-
>
-
-
-
=
-
[
—~
-
pe
-
-
-
>
-
-
-
-
-
-
-
=
-
~
-
=
o~
Y
»
-
-
=
>
-
=
a
pr
-
-
e
-
-
-
-
=
-
-
-_
s
=
-
o~
s
=
L
.
-
=
L
-
-
-
»
-
-
=
s
=
o
-~
-
in
o=
-
Ca
»

""::;‘:_’_4 puyumxm :
e E e

’?‘

https://commons.wikimedia.org/wiki/File:Intel_Pentium_A80501_66_SX950-layout.jpg CC BY-SA 3.0

2.3 formal world success outside mainstream software

Verification: tolerable

e Quality matters sometimes
 Mistakes very expensive
e Big testing budgets already

 Formal may be cheaper!

https://commons.wikimedia.org/wiki/File:Clean_room.jpg

2.3 formal world success outside mainstream software

Verification: necessary

 Requlations

e Or warranties

e Governments may dictate

* |ndustrial policy

e National security

e Public safety

Part 3
Results

Part 3.1
50 years of proofs

3.1 things that sometimes get proven correct

Hardware
("EDA" electronic design automation)

Qualcomm, Apple, STMicro, S AN R R aT
NVIDIA, Sun, HP = ey e g

e Many tools

e Academic (Murphi, NuSMV)
e |ndustrial (Synopsys, Cadence)

e Hardware description languages
(Verilog, VHDL)

e Spec languages (IBM Sugar,
Motorola CBVY, Intel ForSpec, VHDL
Assertions, SystemVerilog SVA,
Synopsys OVA)

3.1 things that sometimes get proven correct

Safety-critical

Flight control: Airbus, Boeing,
Dassault, Rockwell, Honeywell

e Also NASA & ESA

Metro rail control: Alstom, Thales,
Siemens (Singapore, Paris, Sao
Paulo, Ankara, Hong Kong)

Flood dam control: Rotterdam

Nuclear power plant control:
France, China, Korea, USA

Many tools: B, SCADE, PVS,
Astrée, Polyspace, NuSMV

https://commons.wikimedia.org/wiki/File:Effet_SACEM_en_gare_d%27Auber_(RER_A)_par_Cramos.jpg
CC BY-SA 3.0

3.1 things that sometimes get proven correct

Telecoms & Networking

e OSI protocols in LOTOS
o AT&T phone net
e 5ESS switch, CDMA BSS
e CCITT SDL, SPIN, VeriSoft
e New SDN projects

e OpenFlow, P4, Frenetic/
NetKAT (Cornell!)

ym{ eluwupg W | mrg ,';z.ﬂ
mmmmmui:“dm!mm Hm' et

: ,‘7' >-wl7

https://flickr.com/photos/kait_snoddy/2350469445 - CC BY-NC-SA 2.0

3.1 things that sometimes get proven correct

OS Drivers

* |nternet nightmare
* Microsoft bad press

e "Trustworthy Computing'
initiative (early 2000s)

e SLAM project
Static Driver Verifier

e | inux Driver Verification,
DDVerify, Avinux

e BLAST, CPAChecker,
SATABS, CBMC

An error has occurred. To continue:
Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: OE : 016F : BFF9B3D4

Press any key to continue _

3.1 things that sometimes get proven correct

Cryptography

* Verified algorithms:
e AES, SHA256, Curve25519
e Signal protocol
* \erified implementations
e Amazon s2n TLS stack
* MSR & INRIA Everest project

e EasyCrypt, ProVerif, SAW,
Cryptol, FStar and KaRaMeL
(OCaml based)

3.1 things that sometimes get proven correct

Interactive proof heroism

e |nteractive proofs CompCert

Formally Verified Optimizing C Compiler

e Not automatic

CompcCert is an optimizing C compiler which is formally verifie
proofs, to guarantee the absence of compiler bugs. The co

y the semantics of thes yram. This level of confiden
ss is unprecedented and contributes to meeting the highest software assurance levels.

e | abor intensive »

o O @ o e o O e &

- -
—

e Arbitrarily deep properties = &
e Some heroic proofs
* sel4: real-time microkernel

e CompCert: C compiler

e CakeML: ML compiler

3.1 things that sometimes get proven correct

Also Interactive proofs are
fairly big in academic PL?

: Mechanized Metatheory for the Masses:
[
Language deSIQnS The PoPLMARK Challenge

Brian E. Aydemir’, Aaron Bohannon', Matthew Fairbairn®, J. Nathan Foster®,

® S u b't I e pro per‘t i eS Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis’, Geoffrey

Washburn', Stephanie Weirich®, and Steve Zdancewic’

Department of Computer and Information Science, University of Pennsylvania
2 v . - . .
“ Computer Laboratory, University of Cambridge

e Pen-and-paper proofs

Subversion Revision: 171
Document generated on: May 11, 2005 at 15:53

"POPLMark chall !
® 2 005 ar C a en g e Abstract. How close are we to a world where every paper on program-

ming languages is accompanied by an electronic appendix with machine-
checked proofs?
We propose an initial set of benchmarks for measuring progress in this
I . I arca. Based on the metatheory of System Fe, a typed lambda-calculus
() N OW m eC h an Ized p rO OfS with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and type levels,
syntactic forms with variable numbers of components (including binders),
and proofs demanding complex induction principles. We hope that these
benchmarks will help clarify the current state of the art, provide a basis

L]
L : ;ad Iy not autOI I IatIC for comparing competing technologies, and motivate further research.

https://www.seas.upenn.edu/~plclub/poplmark/poplmark.pdf

How did these proofs
happen?

Part 3.2
50 years of tools

3.2 tools for proving things correct

Tools!

e Lots of tools
e Deductive Verifiers
e Abstract interpreters
* Model checkers

* Interactive provers

e Automated provers

https://commons.wikimedia.org/wiki/File:20060513_toolbox.jpg CC-BY-SA 2.5

e Many others besides...

3.2 tools for proving things correct

Deductive verifiers
("design by contract” checkers)

e Build verification conditions (VCs) ReporNo. 11 T Mhiont
from predicates and program logics Report No. STAN-CS 373 1
* Preconditions, postconditions, STANFORD PASCAL VERIFIER
invariants (implicit or explicit) USER MANUAL

by

STANFORD VERIFICATION CROUP

* Prove VCs however possible

* |deally: mostly-automatic

Research sponsored by

Advanced Research Projects Agency

* Reality: semi-manually

COMPUTER SCIENCE DEPARTMENT
Stanford University

e Same as 1970s

e Extensions to many PLs (JML,
SPARK, Frama-C) or basis of PL
designs (Dafny, Whiley, Spec#)

3.2 tools for proving things correct

Abstract interpreters

Check local properties in sound
over-approximation of code

e arithmetic, nullptr, assertions

Automatic, fast, but imprecise

e False alarms

Big in safety-critical

e Astrée, Polyspace, IKOS
Some more-general software

e Facebook Infer, MIRAI

Forbidden zone

== (“

Abstraction of the trajectories

semantics(P) C abstraction(P) C specification(P)

https://ntrs.nasa.gov/citations/20190032528

3.2 tools for proving things correct

Model checkers

e Check state transition function is
logical model of spec formula

NSHTY

Hi9... | Edit... | Options | Madel | SFEC

Cteacking Specificalivres:
MCDULE main
V2R
reques= : boolezn;
state : {ceady,kusv:,
2ESICH
inztozakz) := readw,
nextozabs) = caoc Runilean Conne:lnrs: IHYAH

. ¢ & req
e Often concurrency friendly GRS | o] vt | 0]] o |[¥ e
i ZFEC cone CTL Temporal Operators: LTL
AG 1eyuzsl —» BF slale
AX Al AG AU

e Temporal: "always, eventually"

AF I fur all connpuabalam palh, evenlually T

MG raquest = AF state = busy)

= Jusy)

EX EF EG EU input file ...

mplessemy - distrshor.smy

e Automatic but expensive

| LTL Temporal Opcrators:

Input ordor Til9 ...

output arder file ...

femp.ord

e Explicit: SPIN, TLA+, CADP, e
Murphi, DiVinE L

dynani: rennivring

reorider after praocess

check trans

e Symbolic: NuSMV, BLAST,
SLAM, CBMC

ag only search

mirwanl aeanh

OK

e Big in hardware, telecoms

- 0| x|
verhose level:
0

pearlilinm inelhnd:
Monolkithic
CcDh)_part_thrashold
C
Image_cluster_size
1CCO

Image ‘w1

c

Image_'%z

1

iinage W5

1

iinage W4

innage_verhusily

3.2 tools for proving things correct

Interactive provers

lemma compare_coeff (n : N) (a: N » R) (h: Y k in range (n + 1), monomi

» Arbitrarily deep properties >ak=0:=by
intro m hm
. . have h' := by congrm(coeff $h (n-m))
e Labor intensive sl [

rw [finset_sum_coeff, coeff_zero] at h’
let f : N> R := fun k => if k = m then a m else ©

. . have h'" : Y b in range (n+l), f b = @ := by
* Like a very confusing IDE rw [<- h']
apply sum_congr rfl
intro b hb
e Dependent type based [costinononiat]
have iff : b = m e n-b = n-m := by
constructor
e CTT (NuPRL -- Cornell!) e B
simp [bm]
intro nbm
° COC/CIC (Coq Lean) have hb' : b < n := by simp at hb; linarith
? have hm"' := Nat.sub _add cancel hm
have hb*'"' := Nat.sub_add cancel hb*’

i U-I_I- (Agda) linarith [nbm, hm', hb'"]

rcases em (b=m) with bm | bm

. have nbm : n-b = n-m := by rw [<-iff]; assumption
. QI I (Id”S) simp [bm, nbm] . |
have nbm : n-b # n-m := by contrapose! bm; rw [iff]; assumption
simp [bm, nbm]
. . have h*"': m € range (n+l) := by
* Higher-order logic based simp
linarith
rw [<- add_sum _erase _ _h"'""] at h''

e |sabelle/HOL, HOL4 simp at h'*

assumption

3.2 tools for proving things correct

Automated provers

e Decide (semi-)decidable logic

e Fast

e Subroutines for other tools

e SAT & SMT solvers
e /3, CVC, Yices, Alt-Ergo
e FOL provers

e E, Vampire, SPASS, Prover9

set-1nTo :smt-Ll1b-version
(set-logic AUFDTLIA)
(set-info :source |
Generated by: Yatin Manerkar
Generated on: 2021-03-02
Generator: UCLIDS5
Application: Hardware ordering verification
Target Solver: cvcéd
1)
(set-info :license "https://creativecommons.org/licenses/by/4.0/")
(set-info :category "industrial")
(set-info :status unsat)

(declare-datatypes ((_tuple_1 0)) (((_tuple_1 (nExists Bool) (nTime I
(declare-datatypes ((_tuple_2 0)) (((_tuple_2 (Fetch _tuple_1) (Execut
(declare-datatypes ((_enum_@® @)) (((Read) (Write) (Fence))))

(declare-datatypes ((_tuple_® ©)) (((_tuple_® (valid Bool) (globalID
(declare-fun initial_1_mp () (Array Int _tuple_0))

(declare-fun initial_3__ ucld_2_nodes_var () (Array Int _tuple_2))
(declare-fun initial_2__ ucld_1_testInstrs_bound_input () (Array Int
(assert (= (uopType (select initial_1_mp @)) Write))

(assert (
(assert (
(assert (

= (coreID (select initial_1_mp 0)) @))
= (physAddr (select initial_1_mp 2)) 1))
let ((a!l (<= (nTime (Execute (select initial 3 ucld_2_nod¢d
(nTime (Writeback (select initial_3__ ucld_2_nodes_var
(a!3 (not (<= (globallID (select initial_1_mp 2))
(globalID (select initial_1_mp 3)))))
(a!5 (not (and (valid (select initial_1_mp 3))
(valid (select initial_1_mp 2))))))
(let ((a!2 (and (nExists (Writeback (select initial_3__ ucld_2_nodes_
(nExists (Execute (select initial_3__ ucld_2_nodes_va
(not a!l1)))
(a!4 (and (= (coreID (select initial_1_mp 3
" .

Part 3.3
50 years of theory

3.3 theoretical developments

Theory has improved

* Big improvements
e S0 much theory
e Big delays

e 30+ years sometimes

https://www.flickr.com/photos/jurvetson/128239619/ - CC-BY 2.0

3.3 theoretical developments

Automatic provers improved
an incredible amount

Speed-up of 2012 solver over other solvers

* FOL superposition early 90s [

e 20 years after KB

e Heuristic SAT revolution
(GRASP, Chaff) late 90s

e 35 years after DPLL

e SMT solvers: SAT solvers +
theory decision procedures

https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

3.3 theoretical developments

Model checkers improved
an incredible amount

e Partial-order reduction,
BDDs, SAT-based BMC,
CEGAR, IMC, IC3/PDR

e Concrete-to-symbolic
e Eager-to-lazy

e Finite-to-infinite

https://arieg.bitbucket.io/pdf/ModelChecking.pdf

e [everaged improvements
In automatic provers

3.3 theoretical developments

Program logics got better at
mutable aliased state
and concurrency

Separation logic

* 33 years after Hoare logic

Concurrent separation logic

e 31 years after Owicki-Gries
Linear logic

Tasty hybrids (eg. Rust)

https://cacm.acm.org/magazines/2019/2/234356-separation-logic/fulltext

Hobor-al (2

Hobor-Gherghina
(201 1)

HLRG (2010)

Liang-Fen,

LiLi (2016)

Owicki-Gries (1976)
RSL (2013)
Rely-Guarantee (1983) CSL (2004)

RGSep (2007)
SAGL (2007) Bell-al (2010)

008) Deny-Guarantee (2009) Gotsman-al (2007)
LRG (2009)

CAP (2010)
Jacobs-Piessens (2011)

RGSim (2012)

HOCAP (2013) SCSL 013

g (2013) TaDA (2014)
iCAP (2014)

CaReSL (2013) FTCSL (2015)

_ ColLoSL (2015) FCSL (2014)

GPS (2014) Iris (2015)
Total-TaDA (2016)

Iris 2.0 (2016)

Iris 3.0 (2017) Disel (2019)
iGPS (2017)

Aneris (2020)

https://ilyasergey.net/assets/other/CSL-Family-Tree.pdf

Concurrent RGRefs (2017) Bornat-al (2005) FSL (2016)

FSL++
(2017)

3.3 theoretical developments

Interactive provers improved

* Dependent-type extensions:
e Universe hierarchies
e (Co-)Inductive types
e Dependent patterns

e Higher order unification

e |mplicit arguments,
typeclasses

e Reflection, automation

e Awkward segue to .. ML

RN

DomanedeNolkicesu

e ol C L L

. J',“.,,,,‘Farﬂ
4 1 S 44

x‘ el 41139635511

Rapports de Recherche

CENTRE DE ROCQUENCOURT

THE CALCULUS
OF CONSTRUCTIONS

Instituit National
deRecherche
en Iiformatique
et enAutomatique

Thierry COQUAND
Gérard HUET

Mai 1986

https://doi.org/10.1016/0890-5401(88)90005-3

Part 3.4
50 years of ML
(bonus)

3.4 ML is great

ML is the C of
formal world

ML dialects (OCaml) common
* Implementation language
e Spec-and-proof language

e Object-of-study language

e All of the above, at once!

3.4 ML is great

Why ML?

e Small, clean, expressive

* Helps write complex tools
e Easy to subset or extend

e Correspondence to logic THE DEFI

OF STANDA

e Type and proof terms (REViSED)

e Has a formal semantics

e Easy to study in these tools

3.4 ML is great

Cyclone (and Rust)

e |dea: "ML systems language”
* Help mainstream software
e Bring safety / correctness

e Or: adapt ML to systems niche
e Affine types, borrowing

e Formal-world ideas

Cyclone: A safe dialect of C

Trevor Jim® Greg Morrisett! Dan Grossman' Michael Hicks'

James Cheney' Yanling Wang'
Abstract

Cyclone is a safe dialect of C. It has been designed [, for example. Every introduc-

E:-u”'.' oV VS, Ut urse wa > 1 ll.!']:l il“ll

https://www.cs.cornell.edu/Projects/cyclone/papers/cyclone-safety.pdf

The Rust Language

Nicholas Matsakis Felix S. Klock Il
Mozilla Research Mozilla Research
nmatsakis@mozilla.com pnkfelix@mozilla.com

1. ABSTRACT teed to be free of memory errors (dangling pointers, double
Rust is a new programming language for developing reli- frees) as well as data races.

able and efficient systems. It is designed to support concur- To control aliasing and ensure type soundness, Rust in-

rency and parallelism in building applications and libraries corporates a “”l_i““ of f’“"“"'-‘mp into its type s) em. '““'

that take full advantage of modern hardware. Rust’s static unique owner of an object can hand that (-m'n(‘r.\lup off to

type system is safe’ and expressive and provides strong guar- new UWIII:I’: h'ul the (J\\'ll('{' Ul'd_\t _ﬂlNJ hand off borrowed refer-

http://dx.doi.org/10.1145/2663171.2663188

3.4 ML is great

50 year tech-transfer
from formal world?

Today: 2023 N
o

T-10: 2013-ish, Rust (Mozilla)

T1-20: 2003-ish, Cyclone (AT&T, Cornell)

T-30: 1993-ish, OCaml (INRIA)

T-40: 1983-ish, SML/NJ (AT&T)

T1-50: 1973-ish, ML (Edinburgh)

(dates fudged, for drama)

Conclusion

Conclusion

Prospects

* Formal world fairly niche

 Maybe forever

* Mass programming
* Proof is hard

e Often nothing to prove

e Niche will survive

https://commons.wikimedia.org/wiki/File:Leitstand_2.jpg - CC-BY-SA 3.0

e Tools never better

* Relevance never higher

Conclusion

Never more active

* Many conferences

e CAV, IUCAR, CADE, FM,
FMCAD, VMCAI, TACAS,
ILP, ITP, SAT, ICLP, LICS,
FLoC ...

* Many with competitions!

e SMT-COMP, SV-COMP,
HCVC, COCO, QBF, TPTR,
MCQC, ...

e Some with Cornell faculty as
PC members (or chairs!)

Alexandra Silva at FLoC 2022
https://www.floc2022.org/pictures

Conclusion

Your course, and Cornell

e Your course is an appetizer
e Just learning OCaml

e Unit on (manual) proof

e Curry-Howard is discussed!

e But Cornell is a "formal world site"

40+ year NuPRL project

e Search "formal", "logic" or
"verification" on faculty page

 Maybe explore?

https://www.cs.cornell.edu/people/faculty

Conclusion

Either way, let's call it a day

e Hopefully amusing or educational
* Fun for me to put talk together
* Thanks for your time

e Good luck on exams!

https://flickr.com/photos/morbug/3546165031 - CC-BY-NC 3.0

NI

This talk is CC-BY-SA 4.0 because of the wide variety
of amusing images | used with CC-SA licenses

