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Introduction



Hello!

• Excited!


• Invited by professor-friends


• Random talk


• Half history, half tech


• Not on your exam


• Fun? Maybe interesting?
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Who am I?

• Industrial programmer


• Non academic


• Rust initiator


• Long ago


• Unrelated to Tony Hoare


• Photos!

Turing Award Winner 
Tony Hoare 

Accepting His 
Turing Award 

1980

Me and my dad,

who is not 
Tony Hoare


1982
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Let's begin with 
an interesting quote

Introduction



 
Edsger Dĳkstra

Introduction



???
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??? protected from 
testing programs ???
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Mirror universe

• Makes sense


• In "formal world"


• Today's topic!

https://flickr.com/photos/klauswessel/36403982703 - CC BY-NC 2.0
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Formal World 
runs parallel to mainstream

• Branched from mainstream 


• 50 years ago


• Adjacent


• Interacts!


• Weird


• Challenging


• Science fiction

https://flickr.com/photos/82601786@N03/25312789653/ - CC BY-NC-SA 2.0
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Formal world's 
fundamental premise

• 100% correctness


• Zero bugs


• Don't run, don't test: prove


• Full state-space


• Via formal logic
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Major formal world sites
• France: INRIA, ENS, Paris 7, l'X


• UK: Edinburgh, Oxford, Cambridge, 
Manchester 


• Sweden: Chalmers, Stockholm, KTH


• Netherlands: CWI, TU Eindhoven


• Denmark: DTU, Aalborg


• Germany: MPI Saarland, TU Munich


• Switzerland: ETH Zurich, EPFL


• Israel: Technion, Tel Aviv


• USA: Cornell, CMU, Stanford/SRI, Austin, 
Iowa, Berkeley, MIT; Intel, IBM, MSR

https://flickr.com/photos/nazgjunk/3295100356 - CC BY-NC 2.0
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This talk
• History of split 


• Context, development


• Situation today


• Tools and techniques


• Informed Choice


• Cornell


• Faculty


• Your future

https://flickr.com/photos/hazael/2783985259 - CC BY-NC 2.0
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Caveats
• Outsider


• Biased and wrong


• Many slides


• No time for Q&A


• Some fairly dense


• Download later


• Not on exam
https://flickr.com/photos/acetonic/15154908813 - CC BY-NC-SA 2.0
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Part 1 
Origins



Part 1.1 
The world of computing 

just before the split



50 years ago: 1973
• Computing ~25 years old


• US and Europe


• Well established


• Recognizable!


• Not so long ago


• "Less than one career"


• Robert Constable professor


• Dexter Kozen undergrad
https://commons.wikimedia.org/wiki/File:Supercomputer_NSA-IBM360_85.jpg

1.1 computing before the split



1973 Hardware

• Discrete transistors!


• New: integrated circuits


• 8008, ancestor of x86-64


• Too puny


• Moore's law year one

https://commons.wikimedia.org/wiki/File:KL_Intel_C8008-1.jpg - CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:KA10_mod_end.jpg - CC BY-SA 2.5

1.1 computing before the split



1973 Software

• Unix, grep


• Version control systems


• Relational databases


• Hypertext, early GUIs


• Video games

1.1 computing before the split



1973 Languages
• C


• Smalltalk


• ML


• CLU


• Prolog


• 20 years of other HLLs: 
FORTRAN, COBOL, ALGOL, 
LISP, Simula, PL/I, etc.

1.1 computing before the split



1973 Networking

• Proto-internets: ARPAnet, 
CYCLADES


• Ethernet


• "Timesharing" (DTSS, PLATO)


• Online culture, games, chat

1.1 computing before the split



1973 AI

• 17 years old!


• Big university labs 


• Symbolic, deductive logic


• Neural networks sidelined


• Another story

https://commons.wikimedia.org/wiki/File:SRI_Shakey_with_callouts.jpg CC-BY-SA 3.0

1.1 computing before the split



1973 Government
• "Military-industrial complex"


• Space race


• Missile defence


• Vietnam counter-insurgency


• AI, "human augmentation" 


• Declining spending


• Stirring neoliberalism

1.1 computing before the split



1973 Business
• Century-old regulated monopolies: 

• AT&T: "the phone company"


• 82% of all phones, $22bn 
revenue, >1m employees 

• IBM: "the computer company"


• 70% of all computers, $8bn 
revenue, >250k employees

1.1 computing before the split



1973 Mainstream computing: 
Institutional

• Computers require institutions


• Programming quite serious


• 2000 lb machine, $100,000


• Add 8K of RAM for $50,000!

https://commons.wikimedia.org/wiki/File:PDP-10_1090.jpg CC-BY-SA 3.0

1.1 computing before the split



Part 1.2 
Causes and emergence 

of the split



Logic-for-AI project 
running into trouble

• Disappointments


• Many failed projects


• NP-complete class found


• 1973-4: funding cut


• "AI winter"


• Idle logic talent

https://openlibrary.org/books/OL5079241M/Artificial_intelligence_a_paper_symposium.

1.2 causes of the split



Logic of Programming 
making better headway

• Strachey, Scott, Kahn, Berry: 


• Logical semantics of PLs


• Boyer, Moore, Plotkin, Milner:


• mechanized FP logics


• ML born here, in LCF system


• 1973 Dijkstra predicate-
transformer semantics:


• mechanized imperative logic

https://apps.dtic.mil/sti/pdfs/AD0785072.pdf

1.2 causes of the split



Logic as Types 
blossoming

• 1967 de Bruijn & 1969 Howard 
extend Curry's link: natural 
deduction is lambda calculus 
 
     theorem ↔ type 
          proof ↔ program


• 1972 Girard & 1974 Reynolds: 
2nd order logic is typed 
polymorphic lambda calculus 
("System F")


• 1973 Martin-Löf dependent 
type theory, math foundations

https://doi.org/10.1016/S0049-237X(08)71945-1

1.2 causes of the split



Frustration building software, talk 
of "Software Engineering"

• 1968 NATO "Software Crisis" 
conference


• Software lousy


• Late


• Expensive


• Buggy


• Hard to maintain


• Need "Software Engineering"
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

1.2 causes of the split



Algol 68 Rift
• IFIP 2.1 Algol committee


• Dissenting Minority Report: 
 
new languages aren't enough 
to solve the software crisis


• Break in community: IFIP 2.3


• "Programming methodology", 
proofs and correctness


• later "formal methods"
https://dl.acm.org/doi/10.5555/1061500.1061502

1.2 causes of the split



Formation of IFIP 2.3
• Leading lights of 1970s academic CS


• Several Cornell folks!


• Invite-only, no goal, sharing ideas


• Kept meeting for 50 years!

1.2 causes of the split



Part 2 
Divergence



Part 2.1 
50 years of changes 

in the world of computing



Hardware Changes

• Moore's law


• 1973's 8008: 3k transistors


• 2023's M2: 20b transistors


• By hand up to ~200k!


• Cheap, plentiful computers

https://assets.ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png CC-BY 4.0

2.1 changes in computing



Software Changes
• Mass market of software


• For every occasion


• Work


• Leisure


• Learning


• Communicating


• Massive oversupply

https://www.flickr.com/photos/williamhook/4742869256/ CC-BY 2.0

2.1 changes in computing



Language Changes
• Ousterhout dichotomy: 

"systems" vs. "scripting"


• Systems: C/C++


• Speed above all


• Scripting: VB, Python, JS


• Ease of use above all


• Neither prioritize correctness

2.1 changes in computing



Networking Changes
• BBSs, private systems 

(CompuServe, AOL)


• CCITT/ITU (telcos) "OSI" data 
network: not internet!


• Internet wins


• Nice briefly, then nasty


• 24/7 attacks, organized crime


• "Cyber" now a military term
https://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg CC-BY 2.5

2.1 changes in computing



AI Changes
• Waves of hype, despair


• Neural nets win


• Unclear relevance to formal


• Maybe safety critical?


• Maybe hard to verify?


• Maybe helps verify?


• Won't discuss more, no time

https://commons.wikimedia.org/wiki/File:Example_of_a_deep_neural_network.png CC-BY-SA 4.0

2.1 changes in computing



Government Changes
• Neoliberalism: deregulation, 

deindustrialization, IP focus


• More Military-industrial complex: 
Cold War, Internet, War on Terror


• Western panic over Japan


• MITI VLSI, "5th gen computer"


• DARPA VLSI, VHDL projects


• US hardware-design firms


• Europe: Alvey, ESPRIT

2.1 changes in computing



Business Changes
• 70s antitrust


• AT&T: no computers, breakup


• Ubiquitous UNIX


• IBM: unbundle software, clones


• Ubiquitous DOS


• Broad, cheap computer market


• 80s antitrust: keep prices low!

Typical ad in Byte Magazine, November 1985

2.1 changes in computing



Mainstream computing 
changes: becoming personal

• Personal computers


• Everyone gets one


• Software made by and for 
individuals


• Mass market much larger than 
"institutional era"

https://commons.wikimedia.org/wiki/File:Students_in_a_computer_lab.jpg CC-BY 2.0

2.1 changes in computing



Unfortunately, personal 
(mainstream) software 

was not very formal



Part 2.2 
50 years of rejection



Formal world made 
several wrong bets

• Wrong assumptions about 
software verification:


• Plausible


• Tractable


• Tolerable


• Necessary


• Wrong at least for mainstream

2.2 mainstream rejection of formal world



Verification: implausible
• Software exploratory


• No spec


• "Try stuff and iterate"


• Personal computers, casual, 
cheap, mass programming


• Self-taught coders


• No training or interest in 
formal logic, proof

https://commons.wikimedia.org/wiki/File:Waverly_learns_to_hack.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world



Verification: intractable

• Hard: mutable aliased state


• Mainstream PLs full of it!


• Worse with threads!


• Hard: big programs


• Mainstream programs huge


• GUIs, feature creep

https://commons.wikimedia.org/wiki/File:Eternal_clock.jpg CC-BY-SA 2.0

2.2 mainstream rejection of formal world



Verification: intolerable
• Two software markets


• "Software as overhead": 
platforms, enterprise


• "Software as commodity": 
applications, games


• Neither values quality: 
minimize cost


• Verification = 10-100x cost!

https://www.flickr.com/photos/50128414@N05/5684850240 CC-BY 2.0

2.2 mainstream rejection of formal world



Verification: unnecessary
• 1976 Copyright law: software is 

"work of literature"


• No warranty, no liability


• User learned helplessness


• Software engineering


• High level PLs, types


• Tests


• Version control


• Continuous field updates
https://commons.wikimedia.org/wiki/File: 

COROS.PACE.2.GPS.watch.updating.firmware.v.3.02.0.on.2023-08-29.jpg CC-BY-SA 4.0

2.2 mainstream rejection of formal world



Case study: Ada

• US military solution to crisis


• Not even "formal methods", 
just "high reliability"


• Little uptake: expensive tools, 
complex, rigid, niche market


• Mandated 1991, repealed 1997


• "Off-the-shelf" C/C++ won

2.2 mainstream rejection of formal world



Ok that sounds bad! 
Is anything verified?



Yes!



Part 2.3 
50 years of adoption



Formal world has some 
areas of successful adoption

• Hardware verification 

• Safety-critical systems


• Telecoms & networking


• Operating systems & drivers


• Cryptographic algorithms


• Programming languages
https://www.flickr.com/photos/stopbits/3777015632 CC-BY 2.0

2.3 formal world success outside mainstream software



How?



Verification assumptions  
were not always wrong

• Recall 4 assumptions:


• Plausible


• Tractable


• Tolerable


• Necessary


• Sometimes they hold

2.3 formal world success outside mainstream software



Verification: plausible

• Well-defined problems


• Already math or logic


• Process algebras, FSMs, 
dataflow networks, etc.


• Professionals trained in 
math, engineering https://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed_new.svg CC-BY-SA 3.0

2.3 formal world success outside mainstream software



Verification: tractable

• Small systems


• Inherently small


• Or modular


• Or small approximations


• Finite-state


• Or finite approximations

https://commons.wikimedia.org/wiki/File:Intel_Pentium_A80501_66_SX950-layout.jpg CC BY-SA 3.0

2.3 formal world success outside mainstream software



Verification: tolerable

• Quality matters sometimes


• Mistakes very expensive


• Big testing budgets already


• Formal may be cheaper!

https://commons.wikimedia.org/wiki/File:Clean_room.jpg

2.3 formal world success outside mainstream software



Verification: necessary

• Regulations


• Or warranties


• Governments may dictate


• Industrial policy


• National security


• Public safety

2.3 formal world success outside mainstream software



Part 3 
Results



Part 3.1 
50 years of proofs



Hardware 
("EDA" electronic design automation)
• IBM, Intel, AMD, Arm, NXP, 

Qualcomm, Apple, STMicro, 
NVIDIA, Sun, HP


• Many tools


• Academic (Murphi, NuSMV)


• Industrial (Synopsys, Cadence)


• Hardware description languages 
(Verilog, VHDL)


• Spec languages (IBM Sugar, 
Motorola CBV, Intel ForSpec, VHDL 
Assertions, SystemVerilog SVA, 
Synopsys OVA)

3.1 things that sometimes get proven correct



Safety-critical
• Flight control: Airbus, Boeing, 

Dassault, Rockwell, Honeywell


• Also NASA & ESA


• Metro rail control: Alstom, Thales, 
Siemens (Singapore, Paris, Sao 
Paulo, Ankara, Hong Kong)


• Flood dam control: Rotterdam 


• Nuclear power plant control: 
France, China, Korea, USA


• Many tools: B, SCADE, PVS, 
Astrée, Polyspace, NuSMV

https://flickr.com/photos/hugokernel/5027492067 - CC BY-NC-SA 2.0

https://commons.wikimedia.org/wiki/File:Effet_SACEM_en_gare_d%27Auber_(RER_A)_par_Cramos.jpg 
 CC BY-SA 3.0

3.1 things that sometimes get proven correct



Telecoms & Networking
• OSI protocols in LOTOS


• AT&T phone net


• 5ESS switch, CDMA BSS


• CCITT SDL, SPIN, VeriSoft


• New SDN projects 


• OpenFlow, P4, Frenetic/
NetKAT (Cornell!)

https://flickr.com/photos/kait_snoddy/2350469445 - CC BY-NC-SA 2.0

3.1 things that sometimes get proven correct



OS Drivers
• Internet nightmare


• Microsoft bad press


• "Trustworthy Computing" 
initiative (early 2000s)


• SLAM project 
Static Driver Verifier


• Linux Driver Verification, 
DDVerify, Avinux


• BLAST, CPAChecker, 
SATABS, CBMC

3.1 things that sometimes get proven correct



Cryptography
• Verified algorithms:


• AES, SHA256, Curve25519


• Signal protocol


• Verified implementations


• Amazon s2n TLS stack


• MSR & INRIA Everest project


• EasyCrypt, ProVerif, SAW, 
Cryptol, FStar and KaRaMeL 
(OCaml based)

3.1 things that sometimes get proven correct



Interactive proof heroism
• Interactive proofs


• Not automatic


• Labor intensive


• Arbitrarily deep properties


• Some heroic proofs


• seL4: real-time microkernel


• CompCert: C compiler


• CakeML: ML compiler

3.1 things that sometimes get proven correct



Also interactive proofs are 
fairly big in academic PL?

• Language designs


• Subtle properties


• Pen-and-paper proofs


• 2005 "POPLMark challenge"


• Now "mechanized" proofs


• Sadly not automatic

https://www.seas.upenn.edu/~plclub/poplmark/poplmark.pdf

3.1 things that sometimes get proven correct



How did these proofs 
happen?



Part 3.2 
50 years of tools



Tools!
• Lots of tools


• Deductive Verifiers


• Abstract interpreters


• Model checkers


• Interactive provers


• Automated provers


• Many others besides...
https://commons.wikimedia.org/wiki/File:20060513_toolbox.jpg CC-BY-SA 2.5

3.2 tools for proving things correct



Deductive verifiers 
("design by contract" checkers)
• Build verification conditions (VCs) 

from predicates and program logics


• Preconditions, postconditions, 
invariants (implicit or explicit)


• Prove VCs however possible


• Ideally: mostly-automatic


• Reality: semi-manually


• Same as 1970s


• Extensions to many PLs (JML, 
SPARK, Frama-C) or basis of PL 
designs (Dafny, Whiley, Spec#)

3.2 tools for proving things correct



Abstract interpreters
• Check local properties in sound 

over-approximation of code


• arithmetic, nullptr, assertions


• Automatic, fast, but imprecise


• False alarms


• Big in safety-critical


• Astrée, Polyspace, IKOS


• Some more-general software


• Facebook Infer, MIRAI

3.2 tools for proving things correct

https://ntrs.nasa.gov/citations/20190032528



Model checkers
• Check state transition function is 

logical model of spec formula


• Temporal: "always, eventually"


• Often concurrency friendly


• Automatic but expensive


• Explicit: SPIN, TLA+, CADP, 
Murphi, DiVinE


• Symbolic: NuSMV, BLAST, 
SLAM, CBMC


• Big in hardware, telecoms

3.2 tools for proving things correct



Interactive provers
• Arbitrarily deep properties


• Labor intensive


• Like a very confusing IDE


• Dependent type based


• CTT (NuPRL -- Cornell!)


• CoC/CIC (Coq, Lean)


• UTT (Agda)


• QTT (Idris)


• Higher-order logic based


• Isabelle/HOL, HOL4

3.2 tools for proving things correct



Automated provers
• Decide (semi-)decidable logic


• Fast 

• Subroutines for other tools 

• SAT & SMT solvers


• Z3, CVC, Yices, Alt-Ergo


• FOL provers


• E, Vampire, SPASS, Prover9

3.2 tools for proving things correct



Part 3.3 
50 years of theory



Theory has improved

• Big improvements


• So much theory


• Big delays


• 30+ years sometimes

https://www.flickr.com/photos/jurvetson/128239619/ - CC-BY 2.0

3.3 theoretical developments



Automatic provers improved 
an incredible amount

• FOL superposition early 90s


• 20 years after KB


• Heuristic SAT revolution 
(GRASP, Chaff) late 90s 


• 35 years after DPLL


• SMT solvers: SAT solvers + 
theory decision procedures https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

3.3 theoretical developments



Model checkers improved 
an incredible amount

• Partial-order reduction, 
BDDs, SAT-based BMC, 
CEGAR, IMC, IC3/PDR


• Concrete-to-symbolic


• Eager-to-lazy


• Finite-to-infinite


• Leveraged improvements 
in automatic provers

https://arieg.bitbucket.io/pdf/ModelChecking.pdf

3.3 theoretical developments



Program logics got better at 
mutable aliased state 

and concurrency

• Separation logic


• 33 years after Hoare logic


• Concurrent separation logic


• 31 years after Owicki-Gries


• Linear logic


• Tasty hybrids (eg. Rust)

https://ilyasergey.net/assets/other/CSL-Family-Tree.pdf

https://cacm.acm.org/magazines/2019/2/234356-separation-logic/fulltext

3.3 theoretical developments



Interactive provers improved
• Dependent-type extensions:


• Universe hierarchies


• (Co-)Inductive types


• Dependent patterns 

• Higher order unification


• Implicit arguments, 
typeclasses


• Reflection, automation


• Awkward segue to .. ML
https://doi.org/10.1016/0890-5401(88)90005-3

3.3 theoretical developments



Part 3.4 
50 years of ML 

(bonus)



ML is the C of 
formal world

• ML dialects (OCaml) common


• Implementation language


• Spec-and-proof language


• Object-of-study language


• All of the above, at once!

3.4 ML is great



Why ML?
• Small, clean, expressive


• Helps write complex tools


• Easy to subset or extend


• Correspondence to logic


• Type and proof terms


• Has a formal semantics


• Easy to study in these tools

3.4 ML is great



Cyclone (and Rust)

• Idea: "ML systems language"


• Help mainstream software


• Bring safety / correctness


• Or: adapt ML to systems niche


• Affine types, borrowing


• Formal-world ideas

http://dx.doi.org/10.1145/2663171.2663188

https://www.cs.cornell.edu/Projects/cyclone/papers/cyclone-safety.pdf

3.4 ML is great



50 year tech-transfer 
from formal world?

• Today: 2023


• T-10: 2013-ish, Rust (Mozilla)


• T-20: 2003-ish, Cyclone (AT&T, Cornell)


• T-30: 1993-ish, OCaml (INRIA)


• T-40: 1983-ish, SML/NJ (AT&T)


• T-50: 1973-ish, ML (Edinburgh)


• (dates fudged, for drama)

3.4 ML is great



Conclusion



Prospects
• Formal world fairly niche


• Maybe forever


• Mass programming


• Proof is hard


• Often nothing to prove


• Niche will survive


• Tools never better


• Relevance never higher

https://commons.wikimedia.org/wiki/File:Leitstand_2.jpg - CC-BY-SA 3.0

Conclusion



Never more active
• Many conferences


• CAV, IJCAR, CADE, FM, 
FMCAD, VMCAI, TACAS, 
ILP, ITP, SAT, ICLP, LICS, 
FLoC ...


• Many with competitions!


• SMT-COMP, SV-COMP, 
HCVC, COCO, QBF, TPTP, 
MCC, ...


• Some with Cornell faculty as 
PC members (or chairs!)

Alexandra Silva at FLoC 2022 
https://www.floc2022.org/pictures

Conclusion



Your course, and Cornell
• Your course is an appetizer


• Just learning OCaml


• Unit on (manual) proof


• Curry-Howard is discussed!


• But Cornell is a "formal world site"


• 40+ year NuPRL project


• Search "formal", "logic" or 
"verification" on faculty page


• Maybe explore?
https://www.cs.cornell.edu/people/faculty

Conclusion



Either way, let's call it a day

• Hopefully amusing or educational


• Fun for me to put talk together


• Thanks for your time


• Good luck on exams!

https://flickr.com/photos/morbug/3546165031 - CC-BY-NC 3.0

Conclusion



Fini

This talk is CC-BY-SA 4.0 because of the wide variety 
of amusing images I used with CC-SA licenses


