
Low stress version control

“Low stress”?

Imagine a perfect system...
what's so great about it?

And how does monotone
measure up?

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

File 1

File 2

SHA1

SHA1

da39a3ee5e6b4b0d3255bfef95601890afd80709

983f51862c921442279973f042596c731646ee7d

I remain stress-free because...
I can understand it

File 1

File 2

SHA1

SHA1

main.cc:

mymod/minor.cc:

da39a3ee5e6b4b0d3255bfef95601890afd80709

983f51862c921442279973f042596c731646ee7d

f2cb990f695dd251ca626e893d9dbeb07d310658

A tree

I remain stress-free because...
I can understand it

format_version "1"

dir ""

 file "main.cc"
content [da39a3ee5e6b4b0d3255bfef95601890afd80709]

dir “mymod”

 file "mymod/minor.cc"
content [983f51862c921442279973f042596c731646ee7d]

I remain stress-free because...
I can understand it

But what about versions?

I remain stress-free because...
I can understand it

Revision:
format_version "1"

new_manifest [65cd5f8b1cd1e10e210d9d966ae3bd1696200295]

old_revision [64fd1c6eb06f48d574ff7433178ba2b9b9138198]

patch "main.cc"
 from [983f51862c921442279973f042596c731646ee7d]
 to [da39a3ee5e6b4b0d3255bfef95601890afd80709]

I remain stress-free because...
I can understand it

Revision:
format_version "1"

new_manifest [65cd5f8b1cd1e10e210d9d966ae3bd1696200295]

old_revision [64fd1c6eb06f48d574ff7433178ba2b9b9138198]

patch "main.cc"
 from [983f51862c921442279973f042596c731646ee7d]
 to [da39a3ee5e6b4b0d3255bfef95601890afd80709]

I remain stress-free because...
I can understand it

Revision:
format_version "1"

new_manifest [65cd5f8b1cd1e10e210d9d966ae3bd1696200295]

old_revision [64fd1c6eb06f48d574ff7433178ba2b9b9138198]

patch "main.cc"
 from [983f51862c921442279973f042596c731646ee7d]
 to [da39a3ee5e6b4b0d3255bfef95601890afd80709]

I remain stress-free because...
I can understand it

Revision:
format_version "1"

new_manifest [65cd5f8b1cd1e10e210d9d966ae3bd1696200295]

old_revision [64fd1c6eb06f48d574ff7433178ba2b9b9138198]

patch "main.cc"
 from [983f51862c921442279973f042596c731646ee7d]
 to [da39a3ee5e6b4b0d3255bfef95601890afd80709]

983f51862c921442279973f042596c731646ee7d

I remain stress-free because...
I can understand it

Revision:
format_version "1"

new_manifest [65cd5f8b1cd1e10e210d9d966ae3bd1696200295]

old_revision [64fd1c6eb06f48d574ff7433178ba2b9b9138198]

patch "main.cc"
 from [983f51862c921442279973f042596c731646ee7d]
 to [da39a3ee5e6b4b0d3255bfef95601890afd80709]

983f51862c921442279973f042596c731646ee7d

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

I remain stress-free because...
I can understand it

Review:
 files make trees (“manifests”)
 revisions make a graph (DAG) of trees
 every revision has a unique name

I remain stress-free because...
I can understand it

So that's versions... what
about control?

I remain stress-free because...
I can understand it

Each revision has a cryptographically
strong name
 --> give each user an RSA key
 --> let them attach signed, key/value
 pairs to each revision

I remain stress-free because...
I can understand it

Each revision has a cryptographically
strong name
 --> give each user an RSA key
 --> let them attach signed, key/value
 pairs to each revision

= certs

I remain stress-free because...
I can understand it

Most important certs:
 -- changelog messages
 -- branch certs

I remain stress-free because...
I can understand it

Most important certs:
 -- changelog messages
 -- branch certs

A revision is in branch Foo
if there is a branch=Foo cert
on it

I remain stress-free because...
I can understand it

That's all!

I remain stress-free because...
I can understand it

That's all!
Files, manifests, revisions, certs

(mostly you can even forget about
files and manifests)

I remain stress-free because...
I can understand it

...but where are they?

I remain stress-free because...
I can understand it

...but where are they?
Each user has a file
containing a bag of these
objects – the complete
 history of the project,
 since they last pulled

I remain stress-free because...
I can understand it

User 1

User 2

Network

I remain stress-free because...
I can understand it

User 1

User 2

Network

I remain stress-free because...
I can understand it

Network

User 1

User 2

I remain stress-free because...
I can understand it

Network

User 1

User 2

I remain stress-free because...
I can understand it

For convenience, “User 2” is almost
always a single server (or round-robin

cluster) shared by one community.

I remain stress-free because...
I can understand it

But...!

I remain stress-free because...
I can understand it

But...!

The whole history on every developer's
hard drive? That's totally unreasonable!

I remain stress-free because...
I can understand it

But...!

You have to hash everything, and do
public key operations just to find out
what branches a revision is in?
That's way too slow!

I remain stress-free because...
I can understand it

But...!

As the repos get big, it will take you
forever to find the pieces each side
is missing!

I remain stress-free because...
I can understand it

But...!

As the repos get big, it will take you
forever to find the pieces each side
is missing!

I'm glad you asked...

Digression: merkle tries

001
010
100
110

Digression: merkle tries

001 010 100 110

Digression: merkle tries

001 010 100 110

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

001 010 100 110

SHA1

Digression: merkle tries

Arbitrary set synchronization
Pipelining friendly
O(d log n) bytes, (log n)/2 round trips
 - where d is the size of the difference
 - n is size of the overall set

Digression: merkle tries

Arbitrary set synchronization
Pipelining friendly
O(d log n) bytes, (log n)/2 round trips
 - where d is the size of the difference
 - n is size of the overall set

(rsync scales as O(n))

I remain stress-free because...
I can understand it

Convinced?

I remain stress-free because...
I can understand it

Convinced?

(The implications are highly non-obvious.
Hence, the rest of the talk.)

I remain stress-free because...
I trust that it works right

I remain stress-free because...
I trust that it works right

...duh?

I remain stress-free because...
I trust that it works right

It's not – does it work?
It's – how do I know it works?

Including in the situations I
haven't used it in yet?

I remain stress-free because...
I trust that it works right

Moral:
 Use software written by
 crazy paranoid people.

I remain stress-free because...
I trust that it works right
Instrumentation:
 -- logging (always on)
 -- stack and data tracing
 -- all are dumped to file on crash
Regularly fix problems that are non-
reproducible, occurred in the field, on
repositories we have no access to.

I remain stress-free because...
I trust that it works right
Wait... “crash”?

I remain stress-free because...
I trust that it works right

Wait... “crash”?
 -- monotone is a C++ program that
 does not segfault
 -- 4 kinds of assertions
 -- crash only, crash early
 -- logging and assertions are single
 characters, to maximize use

I remain stress-free because...
I trust that it works right

Some quick statistics:
 -- total executable lines: ~16000
 -- assertions: ~850 (1 in ~20 lines)
 -- logging: ~670 (1 in ~24)
 -- data instrumentation: 253 (1 in ~64)

Total: 1 in ~9 lines devoted to error
detection and diagnosis

I remain stress-free because...
I trust that it works right

Development process:
 -- 90% test coverage
 -- continuous build/test on 10 boxes, 5
 operating systems, 4 architectures
 (we want more!)
 -- coverage information also generated
 continually and linked from front of
 web site

I remain stress-free because...
I trust that it works right

Coding style:
 -- No pointers
 -- Almost no explicit heap allocation
 -- Extreme use of type system
 It's in C++ entirely for the type system.

I remain stress-free because...
I trust that it works right

The compiler will reject:
 -- code that would allow a path to escape
 the working copy
 -- code that passes a hash of a file where
 we wanted the hash of a revision
 -- gzipped-but-not-base64'ed data to a
 function that wanted gzipped-and-
 base64'ed data

I remain stress-free because...
I trust that it works right

Higher level – successful robustness must
be baked in to the architecture.

I remain stress-free because...
I trust that it works right

Examples:
 -- using hashes as names effectively
 tunnels strong end-to-end security
 over existing, social channels
 (IRC, mailing lists, post-it notes...)
 -- 'sync' keeps no state about peers,
 therefore cannot have bugs related to
 state tracking

I remain stress-free because...
I trust that it works right

 See how many more you notice...

I remain stress-free because...
I never worry about my data

 -- there is never any reason not to sync
 changes out; it is a safe operation
 -- sync always pushes all of my changes,
 and pulls all of everybody else's
 changes
 --> every change is backed up on
 every developer's computer

I remain stress-free because...
I never worry about my data

 ---> “restore from backup” is the same
 command and code paths as I
 use all day, every day

I remain stress-free because...
I never worry about my data

Self-imposed rule:
 If we store a piece of information,
 we must verify that piece of information.

Optimization problem: data structures that
can be efficiently verified.

I remain stress-free because...
I never worry about my data

When pulling data, every piece is verified
(hashes, well formedness, semantic
consistency)
When reading database (checkout,
update, ...), data is always verified before
the user can see it.

Monotone worries, so you don't have to.

I remain stress-free because...
I never worry about my data

 But that must be so slow!!!

I remain stress-free because...
I never worry about my data

Sneaky trick – during an initial pull is the
only time a VCS can operate on the
whole database.

Doing exhaustive checking here means
that we have early detection of server
corruption that only affects old, never
used versions...

I remain stress-free because...
I never worry about my data

 'db check'

I remain stress-free because...
I never worry about my data

Monotone has been self-hosting, using its
latest bleeding edge, continuously since
September 2003.

I remain stress-free because...
I never worry about my data

Monotone has been self-hosting, using its
latest bleeding edge, continuously since
September 2003.

Other projects have tens of thousands of
revisions stored.

I remain stress-free because...
I never worry about my data

Monotone has been self-hosting, using its
latest bleeding edge, continuously since
September 2003.

Other projects have tens of thousands of
revisions stored.

No data stored in monotone has ever been
lost. (That we know about.)

I remain stress-free because...
I can always see what happened

Consider three revisions:

 A
 / \
 B C

All have branch=Foo certs on them.

I remain stress-free because...
I can always see what happened

Consider three revisions:

 A
 / \
 B C

All have branch=Foo certs on them.

 ---> branch Foo has 2 heads?!?

I remain stress-free because...
I can always see what happened

Consider a checked in tree A, and two
checkouts B and C:
 A
 / \
 B C

All are working on the same branch.
 ---> this branch has parallel work in it?!?

I remain stress-free because...
I can always see what happened

Consider a checked in tree A, and two
checkouts B and C:
 A
 / \
 B C

All are working on the same branch.
 ---> this branch has parallel work in it?!?
 ---> CVS, SVN say: throw it away!

I remain stress-free because...
I can always see what happened

 Mini-demo

I remain stress-free because...
I can always see what happened

Moral:
 parallelism exists
 we can record it, or throw it away
 I'd rather record it
 --> one branch may have multiple heads

I remain stress-free because...
I don't have to think too hard

All other DVCSes:
 -- branch = location (e.g., host+path)
 -- copy --> create a new, distinct branch

I remain stress-free because...
I don't have to think too hard

Some things about locations:
 -- to make a branch I have to set up a new
 location
 -- no-one will know how to find my new
 branch unless I tell them
 -- they have lots of these to keep track of, so
 maybe they'll remember, maybe not...

I remain stress-free because...
I don't have to think too hard

Some more things about locations:
 -- each one has different rules for access
 -- I can't automatically start hacking on my
 friend's branch
 -- branches can disappear, so you need to
 mirror them...
 -- quick, which mirrors do you update before
 getting on an airplane?
 -- if a branch dies, who has a mirror?

I remain stress-free because...
I don't have to think too hard

Option 1: start adding machinery to solve
 each of these problems

Option 2: don't make the problems in the
 first place

I remain stress-free because...
I don't have to think too hard

Option 1: start adding machinery to solve
 each of these problems

Option 2: don't make the problems in the
 first place

I remain stress-free because...
I don't have to think too hard

Monotone:
 -- locations are ephemeral and carry no state
 -- every copy is a peer, no distinction
 between “original” and “mirror”
 -- so... since we don't need to track anything,
 can just throw it all together

I remain stress-free because...
I don't have to think too hard

Result:
 -- adding a branch is trivial and involves no
 administrative work
 -- everyone sees all branches, because they
 are all mirrored on the group's server
 -- shared branches are the default
 -- everyone mirrors everything

I remain stress-free because...
commit and push always work

In a location-based system, communication is
a mutating operation. In monotone,
communication is purely information.

Thus, monotone commit and push always
work and are safe.

In other systems, one or both may necessarily
involve a merge.

I remain stress-free because...
commit and push always work

Scenario:
 You're in a hurry. You need to catch a plane. Or
your battery is about to die. Or you want to clock
out and go home. Or your hard drive is warning
you it will catch fire any moment now.

You have some finished work, and you want to get
it out of your working copy, and off your hard
drive.

I remain stress-free because...
commit and push always work

$ vcs1 commit
error: working copy is out of date
$ vcs1 update
merging changes...
7 conflicts in 3 files

$ vcs2 commit
$ vcs2 push
attempting to merge...
encountered conflicts, pull first

I remain stress-free because...
commit and push always work

(in the latter case you could make push to a
new branch, but perhaps you would not like

your workflow so dictated...

in monotone we suggest that branches should
mark communal purposes, not “some

divergence happened”)

I remain stress-free because...
I can build the workflow I want

A VCS is part of an ecology of tools.
Certs are designed to let you integrate with
whatever you want – I don't know what all
you can do! Some ideas:
 -- tracking branch status (cf. Xaraya)
 -- managing code review
 -- tracking build/test results
 -- linking to bug trackers
 -- you tell me...

I remain stress-free because...
I can get my work done...

I remain stress-free because...
I can get my work done...
 ...and you can't stop me!

I remain stress-free because...
I can get my work done...
 ...and you can't stop me!

If someone breaks the build, route
around them.

I remain stress-free because...
I can get my work done...
 ...and you can't stop me!

Don't update while in the middle of
work; who needs conflicts then anyway?
Commit first, then merge.

I remain stress-free because...
I can get my work done...
 ...and you can't stop me!

If you discover you're working against
something already broken... update
backwards to something that isn't!
update will move your changes in any
direction when requested, for exactly
this reason.

I remain stress-free because...
I can get my work done...
 ...and you can't stop me!

Use testresult certs; your update
commands will automatically ignore
any broken builds.

Summary
We're good at:
 -- shared branches
 -- group awareness
 -- reducing friction in sharing and collaboration
 -- simple representations
 -- high tech:
 -- first class directories
 -- full support for renames, including directory renames, and merging
 -- arbitrary file/directory attributes (with merger support)
 -- only shipping implementation of a provably correct merge algorithm
 -- i18n'ized, available in 5 languages
 -- fully supported on Win32, OS X, BSD, Solaris, Linux
 -- crypto and end-to-end guarantees, in a friendly and transparent way
 -- crazy insane paranaoic approach to design and coding
 -- self hosting since September 2003, with no recorded data loss by any
 project

Summary
Why not monotone?:
 -- speed on initial pull (but stay tuned – we have fixed the second
 to last bug!)
 -- several flag days between here and 1.0 (though migration is always
 provided).
 -- currently requires every developer download a full copy
 -- requires a dedicated server daemon
 -- though there is a design and prototype fixing this
 -- UI polish is still in progress
 -- lack of proper key/trust management, esp. 3rd party trust delegation
 -- we know how – ask for details if curious

I want...
...to understand.
...to have trust in the program.
...to never worry about my data.
...to record exactly what happened.
...safe commit and safe push.
...to make forward progress even
 when others screw up.
...to think about code. Not VC.

