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Greetings!
• I'm a PL person who's 

worked on a bunch of 
compilers and also done 
some data-systems work.


• Industrial programmer, not 
academic. No grad school.


• Lindsey asked me to give a 
talk to Languages, Systems 
and Data (LSD) group.


• Said "just about any topic" 
and this is what's been on 
my mind lately.
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Overview

• Topic: One Special Technique in PL pragmatics


• Motivation & analogy for vectorized interpreters


• Explain how technique works, what you get


• Talk about which languages employ it


• Talk about details, caveats, opportunities
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Part 1: Introduction
Why am I even talking about interpreters?



PL Pragmatics
• Implementation strategies and mechanisms: 

"How $FEATURE actually works"


• Compilation, linking, versioning


• Interpretation, introspection, sandboxing


• Binding, dispatch, inlining, unwinding


• Control flow, evaluation order, iteration


• Scope, lifetimes, GC, environments


• Data representation, layout, indirections


• Parallelism, barriers, atomicity, locking


• Etc. Etc. Etc. Etc.


• If I understand correctly (certainly judging from texts) 
this isn't taught very deeply. Seems like mostly practical 
lore.
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maybe the only book on the subject?



Pragmatics matter!
• Users complain constantly that 

compilation takes too long.


• Sadly, also complain constantly 
that interpreters are too slow.


• Field of compilers actually 
originates here. First compiler 
(A-0) motivated by making 
interpreter dispatch faster, pre-
processing all dispatch choices 
once for a given program.


• A.K.A. 1st Futamura projection.
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Not just speed
• Tons of pragmatic metrics


• Footprint & update size


• Fault tolerance


• Easy resource management


• Easy debugging


• Field extensibility 
(late binding, reflection)


• Users care a lot about all of it!
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Not just users
• Implementors have a laundry 

list of pragmatic concerns too.


• Labor cost of implementing


• Labor cost of other tooling 
(REPL, debugger, profiler)


• Ease of safety engineering


• Language evolvability


• ... (lots of others) ...


• Many serious concerns!
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Compilers: not so great!
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Interpreters Compilers

edit-test cycle latency ✅ ❌

program / update size ✅ ❌

field extensibility ✅ ❌

execution speed ❌ ✅

total system throughput ❌ ✅

labor cost of implementing ✅ ❌

labor cost of tooling ✅ ❌

ease of safety engineering ✅ ❌

language evolvability ✅ ❌

... (lots of others) ... ✅ ❌



Beginning of an Analogy
• Broadly speaking: interpreters 

are better than compilers at 
almost everything pragmatic 
that users and implementors 
care about.


• Except execution speed  
(and throughput) which we 
sacrifice everything else for, 
choosing compilers.


• Where else have we seen this 
sort of tradeoff being made?
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Driving: not so great!
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Walking Driving

short trip latency ✅ ❌

urban space consumption ✅ ❌

broad accessibility ✅ ❌

speed once underway ❌ ✅

total system throughput ❌ ✅

cost of building infrastructure ✅ ❌

cost of power and maintenance ✅ ❌

ease of safety engineering ✅ ❌

power-source flexibility ✅ ❌

... (lots of others) ... ✅ ❌



Is there 
another option? 

(besides bikes, which complicate the analogy)
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19th Century Tech Calls
• MRT: mass rapid transit!


• Full industrial-powered speed


• Shared Vehicle costs amortized 
over many simultaneous riders


• Density and uniformity gives 
even higher total throughput!


• Hope analogy not too strained


• Let us briefly consider it
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MRT: compelling!
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Walking Driving Subways

short trip latency ✅ ❌ ✅

urban space consumption ✅ ❌ ✅

broad accessibility ✅ ❌ ✅

speed once underway ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

cost of building infrastructure ✅ ❌ 🆗

cost of power and 
maintenance ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

power-source flexibility ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅



Vectorized Interpreters:  
similarly compelling!
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Interpreters Compilers Vectorized 
Interpreters

edit-test cycle latency ✅ ❌ ✅

program / update size ✅ ❌ ✅

field extensibility ✅ ❌ ✅

execution speed ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

labor cost of implementing ✅ ❌ 🆗

labor cost of tooling ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

language evolvability ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅



Tragic Neglect
• Tragically neglected technique 

in PL literature, education


• Most introductory texts, 
courses just don't mention it


• Most practitioners: blank stare


• Compare: vast literature on 
hyper-complex JIT tech


• Compare: electric car tech


• "Maybe just build more MRT"?
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Part 2: Technique
How does this actually work? 

(And what do you get out of it?)
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Two prongs

• Data will mainly be stored in vectors of primitives


• Data structures get decomposed to vectors ("columns")


• Control will mainly involve applying vector operators


• Control structures get decomposed to operators or data
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Data decomposition
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garden[0] garden[1] garden[N-1]

...

...

struct plant { 
  color: enum, 
  flower: bool, 
  height: f64 
}

garden: plants[N]

colors

...
flowers

...
heights

Decomposed to vectors:



Data decomposition
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menagerie[0] menagerie[1] menagerie[N-1]

...

...

enum critter { 
  opossum(dead:bool) 
  snake(length:f64) 
  owl 
}

menagerie: critter[N]

case tag

...
opossums

...
snakes

Decomposed to vectors:



Control decomposition
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for p in garden { 
    if p.height > 5 { 
       !!... 
    } 
}

garden: plants[N]

...
bools

Decomposed to vectors:

...
heights

>(_, 5) ⇒⇒
operator



Two complementary prongs 
that deeply refactor language  

• Vectorized data enables/requires vectorized operators


• Vectorized control uses both, refactors language:


• Loops still happen but no longer in user code, 
all loops implicit in calls to vectorized operators


• Conditionals fundamentally change nature, turning 
from control into vectorized data (bool vectors)
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Two complementary prongs 
that deeply refactor language  
• No more of this: 

 
  for i in iota(1,N) { if foo(i) { x += i } } 

• Users now write something like: 
 
  iota N | fork | (_, foo) | select | sum 

• Or if you prefer: 
 
  select sum(i) from iota(1,N) as i where foo(i) 

• Expect your PL to change. You can hide a lot of this in sugar if you want 
to "look normal", but hiding it completely is "solving auto-vectorization".
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Control change  
is fundamental

• What is really happening here?


• User control factored into  
inner loops and outer paths


• System provides fixed repertoire  
of inner loops


• Analogy: fixed rail lines, 
individual trip routes


• Arguable (PL philosophy):  
"imperative" → "declarative"


• Arguable (poli-sci): 
"laissez-faire" → "central planning" 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Why does this matter?

• If user control is only outer paths, it doesn't matter if 
those paths are chosen in compiled or interpreted code


• Interpreter opcode-dispatch loop is only an outer loop


• One unpredictable indirect dispatch per thousand data 
elements is lost in the noise: interpreter cost is amortized
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Best-of-both pragmatics

• Infinite number of user programs


• Choose interpreter pragmatics for outer paths


• Finite number of vector operators shared by all programs


• Choose compiler pragmatics for inner loops
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Remember this table?
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Interpreters Compilers Vectorized 
Interpreters

edit-test cycle latency ✅ ❌ ✅

program / update size ✅ ❌ ✅

field extensibility ✅ ❌ ✅

execution speed ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

labor cost of implementing ✅ ❌ 🆗

labor cost of tooling ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

language evolvability ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅



Ok but what's that about 
"total system throughput"? 

✅✅✅ 
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Throughput freebies
• Amortizes pointer chasing across many data elements


• Avoids cache pressure wasted on cold columns


• Can be denser for sparse data (unions, optionals)


• Avoids padding for data alignment


• Avoids branch mispredicts while in operator loops


• Often naturally SIMD (including "SIMD" of bitwise ops)


• Often naturally sequential & prefetchable access patterns


• Several new optimization opportunities (will return to this in part 4)
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Ok but what's that about 
"labor cost of implementing 

and tooling"? 
🆗 
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Partly that "finite number" 
of inner loops

• Vectors of primitives means only a few vector types


• Plausibly just say: bool, byte, i64, f64


• NB: vector of bool is bitmap, no more byte per bool


• (Which is good because there'll be a lot of bool vectors)
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Partly that "finite number" 
of inner loops

• Few types is good, because interpreter will contain one 
precompiled specialization of each operation per type


• Actually more like (T*2)^A 

• T is number of types


• 2 is because vector vs. scalar


• A is arity of the operation, usually only 1-3


• Likely hundreds of specialized operators (lots of macros!)
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Also that "decomposition" 
of data and control

• User mental model can be bent a fair bit, but..


• Many users like to think about struct and union


• Many users like to think about if, each and while


• Decomposition is imperfect, visible, confusing: abstraction leaks


• "Why can't I just write a loop instead of maps and filters?"


• "My function is slow, can you add a new vector operator?"


• PL design and tooling carries some extra costs from such leaks
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A return to an analogy

• Life is all compromises, in PL as in urban transport:


• "Why won't the train arrive already, I'm late!"


• "Why must I listen to this stranger's phone call?"


• "My commute is long, can you add a new line?"


• My opinion: it's worth knowing the MRT option exists!
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Part 3: Examples
Which languages do this? 

(And do any of them have users?)
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IEEE Spectrum’s 
Top Programming Languages 2022
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Nobody uses 
these, right?



They're Kinda A Big Deal

• Several of the most widely used languages do this


• They are languages that PL people tend to overlook


• Lots of "idiosyncrasies" at best, or serious design flaws


• Not going to defend any of these as PLs, not the point


• Point is: vectorized interpreter technique works ok 
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Aside: Python?
• Yes


• Python tops the charts 
because ML and Data 
Science


• These use PyTorch and 
NumPy respectively


• Both fine examples of 
vectorized interpretation
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Aside: SQL?

• Yes


• With a caveat: SQL DBs split into OLTP and OLAP


• Transaction processing (point access) vs. bulk analytics


• OLTP DBs typically store data in rows, OLAP in columns


• This line is blurring, for reasons we'll touch on it in part 4
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Common themes

• Many similarities in popular languages that do this


• Numerical analysis, data analysis, data transfer


• Obvious choice if data and ops already homogeneous


• Not as obvious with heterogeneous data, but see 
convergent evolution in many data-intensive systems 
 
  foreach <many-data!>: do <same-thing>
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Another perspective
• Ever heard of  

"Ousterhout's Dichotomy"?


• Fast, static, compiled 
language on the inside


• Slow, dynamic, 
interpreted glue 
language outside


• A lot of these are "glue 
language for Fortran code"
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Everything is a sandwich

• Arguably PHP, Perl, AWK, sed


• Vector: string 

• Operators: regex match, string interpolation, IO


• Short programs applied to lots of data


• My old boss: "The fast Lisp is the one that spends 
most of its time in its primitive C functions"

42



Everything is a sandwich
• Arguably also shell, though only in the lives of 

the subprocesses that it runs


• Vector: char[PIPE_BUF] 

• Operators: /usr/bin 

• Composition via pipes, shell loops barely work


• Those fun stories about shell scripts beating other PLs 
are real though, because the "operators" are fast!
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Have you heard?
• I have to mention APL eventually


• APLs are not especially popular (outside the cult)


• Tacit, mathy, higher-order, wild extended charset


• Every program a code-golf hole in one


• Example: ((+.×⍨⊢~∘.×⍨)1↓⍳)17 

• But they are very fast, tiny vectorized interpreters
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Other cases #1

• "Data oriented design"


• Peak-perf-chasing trend in game dev


• Sometimes an interpreter (scripted "game engine")


• Sometimes an "SoA feature" in a compiled PL: Jai


• Sometimes just a "design pattern": C++, Zig, Rust, 
often with library / metaprogram / macro support
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Other cases #2
• "Nested Data Parallel" languages


• NESL, Nepal, Manticore, Futhark, Legion, ...


• Some interpreters, some compilers


• Mainly aiming to extract parallelism from vectorized code. 
Also do a "flattening transformation" on nested vectors: 
https://en.wikipedia.org/wiki/Flattening_transformation  
(One of several extensions to data structure decomposition) 


• Today's topic (mainly) much simpler: amortizing interpreters
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Reiterating first slide

• This is quite a widespread pattern


• Often in somewhat overlooked PLs


• Nonetheless many are load-bearing for real work


• Again: the technique is worth studying and reusing


• Amortized interpreters via homogeneous data & ops
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homogeneity = efficiency
(via cost amortization)
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Part 4: Details
Some caveats and opportunities
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Moderate chunk size
• Operating on an whole vector 

at a time has some drawbacks


• Better to use a vector chunk


• Chunk size is minimum unit of 
work, too big can mean waste


• Big chunks use more cache, 
memory bandwidth


• (Arbitrarily long trains also 
somewhat unwieldy!)
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Moderate chunk size
• This is a quantitative question


• It has been investigated and 
answered fairly conclusively


• Your chunks should be 1-8kb


• I.e. amortizing interpreter 
costs >1000:1 is enough for 
those costs to be ~ignored


• NB: L1 dcache usually 32kb 
due to 8-way VIPT, 4k pages
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https://doi.org/10.14778/3275366.3275370

Kersten et al. 2018

https://doi.org/10.14778/3275366.3275370


PAX / HTAP / etc.
• Workload might want to do a pointwise 

load/store on a row, access 1 whole row


• Large columns are bad for this! Need to 
read and write lots of wasted data


• Another reason to use partial columns: can 
store all columns for a group of N rows


• Bunch of literature jargon:


• PAX ("Partiton Attributes acXross")


• HTAP (Hybrid Transactional / Analytic)


• "Row Groups", "Data Blocks", etc.


• Often mixed with LSM design: reform row 
group to columns when flushing to disk
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https://doi.org/10.1007/s00778-002-0074-9

Ailamaki et al. 2002

https://doi.org/10.1007/s00778-002-0074-9


Parallelism
• As mentioned, vector ⇒ SIMD


• People have been trying to 
extract parallelism through 
vectorization forever


• TI ASC, CDC STAR, Cray, 
Convex, Thinking Machines


• Eventually we all got GPUs and 
Arm SVE2


• GPU analytic databases 
and vectorized interpreters 
are definitely a thing now 
(OmniSci, RAPIDS, ArrayFire)
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Distribution
• Many 2023 OLAP databases aren't single-node


• "Big Data" system == distributed vectorized interpreter


• Amortizing network RPCs, not just indirect branches!


• Parallelizing as much as possible too!


• Parquet, ORC, Arrow. About 8 million Apache projects.


• Redshift, BigQuery, Snowflake ...
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Compression
• Data stored in a column is often 

very similar row-by-row


• You can often compress it!


• Don't laugh: "lightweight" only


• RLE, delta encoding, null 
skipping, constant runs, etc.


• Many operators can act directly 
on compressed data, in situ


• Even decompressing then acting 
can be a memory bandwidth win, 
decompress values only in cache
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Declarative reordering

• Earlier I mentioned that 
vectorization makes program 
control more "declarative"


• Formally: less dependent on 
some stated evaluation order


• This is an opportunity to 
optimize execution!


• SQL join order can vary speed 
by >4 orders of magnitude!
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https://doi.org/10.14778/2850583.2850594

Leis et al. 2015

https://doi.org/10.14778/2850583.2850594


Adaptive reordering

• Great thing about interpreters: 
can change stuff at runtime


• Join order can adapt on the fly


• Get part way in, change plan


• If you have CPU to spend, 
try two at once and cancel 
the one that's going too slow
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Conclusion
Thank you for entertaining this 

extended mass rapid transit analogy
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Could go on all day
• Database literature is full of 

ideas that PL people should 
read and think about!


• Array languages have a bad 
reputation for being all math!


• Everything should be vectors!


• Interpreters can be amortized!


• The memory hierarchy is real!


• Invest in mass rapid transit!


• I am out of time
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Fini
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These slides are licensed CC BY-SA 4.0 because I used that excellent photo of Grace Hopper again,

everything else is public domain or a fair-use excerpt from a paper as far as I can tell.


