
Vectorized Interpreters
MRT for PL

Spring 2023

1

Greetings!
• I'm a PL person who's

worked on a bunch of
compilers and also done
some data-systems work.

• Industrial programmer, not
academic. No grad school.

• Lindsey asked me to give a
talk to Languages, Systems
and Data (LSD) group.

• Said "just about any topic"
and this is what's been on
my mind lately.

2

Overview

• Topic: One Special Technique in PL pragmatics

• Motivation & analogy for vectorized interpreters

• Explain how technique works, what you get

• Talk about which languages employ it

• Talk about details, caveats, opportunities

3

4

Part 1: Introduction
Why am I even talking about interpreters?

PL Pragmatics
• Implementation strategies and mechanisms: 

"How $FEATURE actually works"

• Compilation, linking, versioning

• Interpretation, introspection, sandboxing

• Binding, dispatch, inlining, unwinding

• Control flow, evaluation order, iteration

• Scope, lifetimes, GC, environments

• Data representation, layout, indirections

• Parallelism, barriers, atomicity, locking

• Etc. Etc. Etc. Etc.

• If I understand correctly (certainly judging from texts)
this isn't taught very deeply. Seems like mostly practical
lore.

5

maybe the only book on the subject?

Pragmatics matter!
• Users complain constantly that

compilation takes too long.

• Sadly, also complain constantly
that interpreters are too slow.

• Field of compilers actually
originates here. First compiler
(A-0) motivated by making
interpreter dispatch faster, pre-
processing all dispatch choices
once for a given program.

• A.K.A. 1st Futamura projection.

6
http://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_©Lynn_Gilbert.jpg - CC BY-SA 4.0

Not just speed
• Tons of pragmatic metrics

• Footprint & update size

• Fault tolerance

• Easy resource management

• Easy debugging

• Field extensibility 
(late binding, reflection)

• Users care a lot about all of it!

7

Not just users
• Implementors have a laundry

list of pragmatic concerns too.

• Labor cost of implementing

• Labor cost of other tooling 
(REPL, debugger, profiler)

• Ease of safety engineering

• Language evolvability

• ... (lots of others) ...

• Many serious concerns!

8

Compilers: not so great!

9

Interpreters Compilers

edit-test cycle latency ✅ ❌

program / update size ✅ ❌

field extensibility ✅ ❌

execution speed ❌ ✅

total system throughput ❌ ✅

labor cost of implementing ✅ ❌

labor cost of tooling ✅ ❌

ease of safety engineering ✅ ❌

language evolvability ✅ ❌

... (lots of others) ... ✅ ❌

Beginning of an Analogy
• Broadly speaking: interpreters

are better than compilers at
almost everything pragmatic
that users and implementors
care about.

• Except execution speed  
(and throughput) which we
sacrifice everything else for,
choosing compilers.

• Where else have we seen this
sort of tradeoff being made?

10

Driving: not so great!

11

Walking Driving

short trip latency ✅ ❌

urban space consumption ✅ ❌

broad accessibility ✅ ❌

speed once underway ❌ ✅

total system throughput ❌ ✅

cost of building infrastructure ✅ ❌

cost of power and maintenance ✅ ❌

ease of safety engineering ✅ ❌

power-source flexibility ✅ ❌

... (lots of others) ... ✅ ❌

Is there
another option?

(besides bikes, which complicate the analogy)

12

19th Century Tech Calls
• MRT: mass rapid transit!

• Full industrial-powered speed

• Shared Vehicle costs amortized
over many simultaneous riders

• Density and uniformity gives
even higher total throughput!

• Hope analogy not too strained

• Let us briefly consider it

13

MRT: compelling!

14

Walking Driving Subways

short trip latency ✅ ❌ ✅

urban space consumption ✅ ❌ ✅

broad accessibility ✅ ❌ ✅

speed once underway ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

cost of building infrastructure ✅ ❌ 🆗

cost of power and
maintenance ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

power-source flexibility ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅

Vectorized Interpreters:
similarly compelling!

15

Interpreters Compilers Vectorized
Interpreters

edit-test cycle latency ✅ ❌ ✅

program / update size ✅ ❌ ✅

field extensibility ✅ ❌ ✅

execution speed ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

labor cost of implementing ✅ ❌ 🆗

labor cost of tooling ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

language evolvability ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅

Tragic Neglect
• Tragically neglected technique

in PL literature, education

• Most introductory texts,
courses just don't mention it

• Most practitioners: blank stare

• Compare: vast literature on
hyper-complex JIT tech

• Compare: electric car tech

• "Maybe just build more MRT"?

16

Part 2: Technique
How does this actually work? 

(And what do you get out of it?)

17

Two prongs

• Data will mainly be stored in vectors of primitives

• Data structures get decomposed to vectors ("columns")

• Control will mainly involve applying vector operators

• Control structures get decomposed to operators or data

18

Data decomposition

19

garden[0] garden[1] garden[N-1]

...

...

struct plant {
 color: enum,
 flower: bool,
 height: f64
}

garden: plants[N]

colors

...
flowers

...
heights

Decomposed to vectors:

Data decomposition

20

menagerie[0] menagerie[1] menagerie[N-1]

...

...

enum critter {
 opossum(dead:bool)
 snake(length:f64)
 owl
}

menagerie: critter[N]

case tag

...
opossums

...
snakes

Decomposed to vectors:

Control decomposition

21

for p in garden {
 if p.height > 5 {
 !!...
 }
}

garden: plants[N]

...
bools

Decomposed to vectors:

...
heights

>(_, 5) ⇒⇒
operator

Two complementary prongs
that deeply refactor language

• Vectorized data enables/requires vectorized operators

• Vectorized control uses both, refactors language:

• Loops still happen but no longer in user code, 
all loops implicit in calls to vectorized operators

• Conditionals fundamentally change nature, turning 
from control into vectorized data (bool vectors)

22

Two complementary prongs
that deeply refactor language
• No more of this: 

 
 for i in iota(1,N) { if foo(i) { x += i } }

• Users now write something like: 
 
 iota N | fork | (_, foo) | select | sum

• Or if you prefer:

 select sum(i) from iota(1,N) as i where foo(i)

• Expect your PL to change. You can hide a lot of this in sugar if you want
to "look normal", but hiding it completely is "solving auto-vectorization".

23

Control change
is fundamental

• What is really happening here?

• User control factored into  
inner loops and outer paths

• System provides fixed repertoire  
of inner loops

• Analogy: fixed rail lines, 
individual trip routes

• Arguable (PL philosophy):  
"imperative" → "declarative"

• Arguable (poli-sci): 
"laissez-faire" → "central planning" 

24

Why does this matter?

• If user control is only outer paths, it doesn't matter if
those paths are chosen in compiled or interpreted code

• Interpreter opcode-dispatch loop is only an outer loop

• One unpredictable indirect dispatch per thousand data
elements is lost in the noise: interpreter cost is amortized

25

Best-of-both pragmatics

• Infinite number of user programs

• Choose interpreter pragmatics for outer paths

• Finite number of vector operators shared by all programs

• Choose compiler pragmatics for inner loops

26

Remember this table?

27

Interpreters Compilers Vectorized
Interpreters

edit-test cycle latency ✅ ❌ ✅

program / update size ✅ ❌ ✅

field extensibility ✅ ❌ ✅

execution speed ❌ ✅ ✅

total system throughput ❌ ✅ ✅✅✅

labor cost of implementing ✅ ❌ 🆗

labor cost of tooling ✅ ❌ 🆗

ease of safety engineering ✅ ❌ ✅

language evolvability ✅ ❌ ✅

... (lots of others) ... ✅ ❌ ✅

Ok but what's that about
"total system throughput"?

✅✅✅

28

Throughput freebies
• Amortizes pointer chasing across many data elements

• Avoids cache pressure wasted on cold columns

• Can be denser for sparse data (unions, optionals)

• Avoids padding for data alignment

• Avoids branch mispredicts while in operator loops

• Often naturally SIMD (including "SIMD" of bitwise ops)

• Often naturally sequential & prefetchable access patterns

• Several new optimization opportunities (will return to this in part 4)

29

Ok but what's that about
"labor cost of implementing

and tooling"?
🆗

30

Partly that "finite number"
of inner loops

• Vectors of primitives means only a few vector types

• Plausibly just say: bool, byte, i64, f64

• NB: vector of bool is bitmap, no more byte per bool

• (Which is good because there'll be a lot of bool vectors)

31

Partly that "finite number"
of inner loops

• Few types is good, because interpreter will contain one
precompiled specialization of each operation per type

• Actually more like (T*2)^A

• T is number of types

• 2 is because vector vs. scalar

• A is arity of the operation, usually only 1-3

• Likely hundreds of specialized operators (lots of macros!)

32

Also that "decomposition"
of data and control

• User mental model can be bent a fair bit, but..

• Many users like to think about struct and union

• Many users like to think about if, each and while

• Decomposition is imperfect, visible, confusing: abstraction leaks

• "Why can't I just write a loop instead of maps and filters?"

• "My function is slow, can you add a new vector operator?"

• PL design and tooling carries some extra costs from such leaks

33

A return to an analogy

• Life is all compromises, in PL as in urban transport:

• "Why won't the train arrive already, I'm late!"

• "Why must I listen to this stranger's phone call?"

• "My commute is long, can you add a new line?"

• My opinion: it's worth knowing the MRT option exists!

34

Part 3: Examples
Which languages do this? 

(And do any of them have users?)

35

IEEE Spectrum’s
Top Programming Languages 2022

36

Nobody uses 
these, right?

They're Kinda A Big Deal

• Several of the most widely used languages do this

• They are languages that PL people tend to overlook

• Lots of "idiosyncrasies" at best, or serious design flaws

• Not going to defend any of these as PLs, not the point

• Point is: vectorized interpreter technique works ok

37

Aside: Python?
• Yes

• Python tops the charts
because ML and Data
Science

• These use PyTorch and
NumPy respectively

• Both fine examples of
vectorized interpretation

38

Aside: SQL?

• Yes

• With a caveat: SQL DBs split into OLTP and OLAP

• Transaction processing (point access) vs. bulk analytics

• OLTP DBs typically store data in rows, OLAP in columns

• This line is blurring, for reasons we'll touch on it in part 4

39

Common themes

• Many similarities in popular languages that do this

• Numerical analysis, data analysis, data transfer

• Obvious choice if data and ops already homogeneous

• Not as obvious with heterogeneous data, but see 
convergent evolution in many data-intensive systems 
 
 foreach <many-data!>: do <same-thing>

40

Another perspective
• Ever heard of  

"Ousterhout's Dichotomy"?

• Fast, static, compiled
language on the inside

• Slow, dynamic,
interpreted glue
language outside

• A lot of these are "glue
language for Fortran code"

41

Everything is a sandwich

• Arguably PHP, Perl, AWK, sed

• Vector: string

• Operators: regex match, string interpolation, IO

• Short programs applied to lots of data

• My old boss: "The fast Lisp is the one that spends
most of its time in its primitive C functions"

42

Everything is a sandwich
• Arguably also shell, though only in the lives of 

the subprocesses that it runs

• Vector: char[PIPE_BUF]

• Operators: /usr/bin

• Composition via pipes, shell loops barely work

• Those fun stories about shell scripts beating other PLs
are real though, because the "operators" are fast!

43

Have you heard?
• I have to mention APL eventually

• APLs are not especially popular (outside the cult)

• Tacit, mathy, higher-order, wild extended charset

• Every program a code-golf hole in one

• Example: ((+.×⍨⊢~∘.×⍨)1↓⍳)17

• But they are very fast, tiny vectorized interpreters

44

Other cases #1

• "Data oriented design"

• Peak-perf-chasing trend in game dev

• Sometimes an interpreter (scripted "game engine")

• Sometimes an "SoA feature" in a compiled PL: Jai

• Sometimes just a "design pattern": C++, Zig, Rust,
often with library / metaprogram / macro support

45

Other cases #2
• "Nested Data Parallel" languages

• NESL, Nepal, Manticore, Futhark, Legion, ...

• Some interpreters, some compilers

• Mainly aiming to extract parallelism from vectorized code. 
Also do a "flattening transformation" on nested vectors: 
https://en.wikipedia.org/wiki/Flattening_transformation  
(One of several extensions to data structure decomposition)

• Today's topic (mainly) much simpler: amortizing interpreters

46

https://en.wikipedia.org/wiki/Flattening_transformation

Reiterating first slide

• This is quite a widespread pattern

• Often in somewhat overlooked PLs

• Nonetheless many are load-bearing for real work

• Again: the technique is worth studying and reusing

• Amortized interpreters via homogeneous data & ops

47

homogeneity = efficiency
(via cost amortization)

48

Part 4: Details
Some caveats and opportunities

49

Moderate chunk size
• Operating on an whole vector

at a time has some drawbacks

• Better to use a vector chunk

• Chunk size is minimum unit of
work, too big can mean waste

• Big chunks use more cache, 
memory bandwidth

• (Arbitrarily long trains also 
somewhat unwieldy!)

50

Moderate chunk size
• This is a quantitative question

• It has been investigated and 
answered fairly conclusively

• Your chunks should be 1-8kb

• I.e. amortizing interpreter
costs >1000:1 is enough for
those costs to be ~ignored

• NB: L1 dcache usually 32kb 
due to 8-way VIPT, 4k pages

51

https://doi.org/10.14778/3275366.3275370

Kersten et al. 2018

https://doi.org/10.14778/3275366.3275370

PAX / HTAP / etc.
• Workload might want to do a pointwise

load/store on a row, access 1 whole row

• Large columns are bad for this! Need to
read and write lots of wasted data

• Another reason to use partial columns: can
store all columns for a group of N rows

• Bunch of literature jargon:

• PAX ("Partiton Attributes acXross")

• HTAP (Hybrid Transactional / Analytic)

• "Row Groups", "Data Blocks", etc.

• Often mixed with LSM design: reform row
group to columns when flushing to disk

52

https://doi.org/10.1007/s00778-002-0074-9

Ailamaki et al. 2002

https://doi.org/10.1007/s00778-002-0074-9

Parallelism
• As mentioned, vector ⇒ SIMD

• People have been trying to
extract parallelism through
vectorization forever

• TI ASC, CDC STAR, Cray,
Convex, Thinking Machines

• Eventually we all got GPUs and
Arm SVE2

• GPU analytic databases 
and vectorized interpreters 
are definitely a thing now 
(OmniSci, RAPIDS, ArrayFire)

53

Distribution
• Many 2023 OLAP databases aren't single-node

• "Big Data" system == distributed vectorized interpreter

• Amortizing network RPCs, not just indirect branches!

• Parallelizing as much as possible too!

• Parquet, ORC, Arrow. About 8 million Apache projects.

• Redshift, BigQuery, Snowflake ...

54

Compression
• Data stored in a column is often

very similar row-by-row

• You can often compress it!

• Don't laugh: "lightweight" only

• RLE, delta encoding, null
skipping, constant runs, etc.

• Many operators can act directly
on compressed data, in situ

• Even decompressing then acting
can be a memory bandwidth win, 
decompress values only in cache

55

Declarative reordering

• Earlier I mentioned that
vectorization makes program
control more "declarative"

• Formally: less dependent on
some stated evaluation order

• This is an opportunity to
optimize execution!

• SQL join order can vary speed
by >4 orders of magnitude!

56

https://doi.org/10.14778/2850583.2850594

Leis et al. 2015

https://doi.org/10.14778/2850583.2850594

Adaptive reordering

• Great thing about interpreters: 
can change stuff at runtime

• Join order can adapt on the fly

• Get part way in, change plan

• If you have CPU to spend, 
try two at once and cancel 
the one that's going too slow

57

Conclusion
Thank you for entertaining this 

extended mass rapid transit analogy

58

Could go on all day
• Database literature is full of 

ideas that PL people should 
read and think about!

• Array languages have a bad 
reputation for being all math!

• Everything should be vectors!

• Interpreters can be amortized!

• The memory hierarchy is real!

• Invest in mass rapid transit!

• I am out of time

59

Fini

60

These slides are licensed CC BY-SA 4.0 because I used that excellent photo of Grace Hopper again,

everything else is public domain or a fair-use excerpt from a paper as far as I can tell.

