
Graydon Hoare, March 2022

Rust for "modern" C++ devs
it is 2022 so let's say C++17 - C++20 counts as modern

Overview

• Talk will have 3 parts

• Orientation and introduction

• Hard stuff: memory safety

• Easy stuff: everything else

• I'm sorry my presentation style is
just huge walls of text that I read

• Also very sorry there are 107 slides

Part 1

Orientation & Introduction

Orientation

Orientation
Who this talk is for

• Assuming you know C++ fairly well

• At least well enough to be scared of it

• Will use some analogies to "modern" C++, newer features

• C++11: std::move, unique_ptr, shared_ptr, promise/future, mutex/
scoped_lock, auto, range-for loops, lambdas

• C++17: optional, variant, string_view, execution::par

• C++20: concepts, modules, ranges, coroutines

• You don't have to know all these things, it'll just help a bit

Orientation
Who is giving this talk: me, hello!

• Designed, implemented early Rust 16 years ago

• Can't describe how old I feel saying that

• Worked on it for 7ish years, left project 8ish years ago

• Amazingly, still 2 years before 1.0 shipped

• Used it for hobby work since, followed development

• Not 100% fond of everything, won't sugarcoat problems

• Still think it's a good step up from C++, recommend it

Introduction

Introduction
A quick taste of Rust

Introduction
A quick taste of Rust

• Let's just look at a bit of random Rust code so you can see it.

• I will only put these on the screen for a few seconds.

• This is like an aesthetic-familiarity thing.

• So you are not shocked later.

• It tastes a little like C++.

• But also .. different.

Introduction
A quick taste of Rust

struct Point {

 x: i32,

 y: i32,

}

fn main() {

 let p = Point {x: 1, y: 2};

}

Introduction
A quick taste of Rust

let mut x: i32 = 5;

let mut done: bool = false;

while !done {

 x += x - 3;

 if x % 5 == 0 {

 done = true;

 }

}

Introduction
A quick taste of Rust

struct Circle {

 radius: f64,

}

trait HasArea {

 fn area(&self) -> f64;

}

impl HasArea for Circle {

 fn area(&self) -> f64 {

 std::f64::consts::PI * (self.radius * self.radius)

 }

}

Introduction
A quick taste of Rust

use std::collections::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);

map.insert("b", 2);

map.insert("c", 3);

for key in map.keys() {

 println!("{}", key);

}

Introduction
A quick taste of Rust

let v: Vec<i32> =

 vec![1, 2, 3]

 .into_iter()

 .map(|x| x + 1)

 .rev()

 .collect();

assert_eq!(v, [4, 3, 2]);

Introduction
What is good about Rust

Introduction
What is good about Rust

• The main selling feature: Safety

• Without performance overheads

• Rust mostly prevents several big, bad classes of bugs

• "Spatial" memory errors: out-of-bounds / wild / null pointers

• "Temporal" memory errors: use-before-init, use-after-free

• Multiple threads racing on same data

• Pretty much all UB

Introduction
What is good about Rust

• Many minor fixes that prevent ubiquitous C++ bugs

• Can't write dangling-else, switch-case-fallthrough, or goto

• No silent int-float, signed-unsigned coercions

• Booleans, enums, integers, pointers not mixable

• Can't typo == as =

• Strings guaranteed UTF-8, no random access

• Culture of partial functions that return precise errors

Introduction
What is good about Rust

• It's also quite expressive

• Sum types and pattern matching

• Rich generic traits system

• Extensive type inference

• Macros and attributes for boilerplate

Introduction
What is good about Rust

• Slightly more building blocks than C++, but simpler and more orthogonal

• Not everything jammed into class and template

• Fewer things to remember to write "the way that doesn't explode"

• Less implicit code, more C-like: data separate from code

• Operator overloading did, unfortunately, make it in

• But without conversion or copy-constructors, it's not so bad

• It is not a small language, but I think it's smaller than C++

Introduction
What is good about Rust

• It also has great, very standardized tooling

• Configuration, building, testing

• Packages, dependencies

• Profiling, fuzzing

• Documentation, code-formatting

• A very good editor / IDE backend

Introduction
What is good about Rust

• The compiler has fantastic diagnostics

• With standard, fine-grained control over checks

• The IDE often gives you a push-button fix

• You can opt-in to zillions of extras

• Everything is very documented

Introduction
What is good about Rust

• You can use it where you use C++

• Ahead-of-time static compilation

• Everything specialized, inlined, LLVM-optimized, quite fast

• Standard linkage to C/C++ programs

• No significant "runtime" to embed

• Lots and lots of C/C++ programs including bits of Rust now

Introduction
What is good about Rust

• There is an enormous package ecosystem

• Turns out standard package tooling helps a lot

• Seriously, 77,136 crates as of today

• Likely a package for anything you need

• Due to safety, orthogonality and standardization, packages often combine ok

• Not always, but it's less worrisome than C++

Introduction
What is bad about Rust

Introduction
What is bad about Rust

• The language is somewhat inflexible

• You have to "work with the grain of it"

• It will fight you, stubbornly, if you do not

• This is not an enjoyable fight

• Especially if it involves shared memory

• Or cycles in memory

• Really, it greatly prefers trees

Introduction
What is bad about Rust

• It has high cognitive load

• Lots to keep in mind when working

• Lots of time spent with code not compiling

• Lots to learn just to get basics working

• Certain amount of "type tetris" busy-work, over-design

• And also a new thing: "borrow checking"

• (We will get to it later)

Introduction
What is bad about Rust

• The compiler is quite resource intensive

• Buy a fast machine, really

• People are working on improving this

• Use a good IDE for fast, live errors

• Remote dev works well: vscode on laptop, rust-analyzer on big machine

• Workstation, remote cloud machine, etc.

Introduction
What is bad about Rust

• Some parts are clearly not done

• Much of the async story is messy

• Much of the error handling story too

• A few bits of the stdlib are vestigial or bad ideas that stuck

• Third party libraries are filling in as best they can

• Keep in mind, C++20 still can't open a socket portably

• Things take time

Introduction
What is bad about Rust

• The enormous package ecosystem is a mixed blessing

• Easy to wind up with enormous mystery-meat dependency trees

• Add 1 dependency, suddenly you're building 200 new packages

• Many packages are immature or abandonware

• Even among working options, so much choice means paralysis

• Days spent browsing for the right library

• Possibly faster to write your own

Part 2

Hard stuff: memory safety

Memory safety

Want to make sure we cover this
while you are hopefully still awake

I'm sorry my slide style is so boring

Try to make it through this part

This is the somewhat high-tech bit

Memory safety
The main thing

• Main theme in design: better-behaved pointers

• Steep 60% part of Rust learning curve is internalizing pointer rules

• May seem arbitrary, tyrannical, cruel

• Really just formalize "safe version of C++ idioms"

• But no wiggle room: won't compile if violated

• Once reflexive, fairly smooth sailing

• Other 40% is much less steep, just "work"

Memory safety
The main thing

• C++ pointer-ish types have many ok-ish ingredients

• Owners: unique_ptr<T> and shared_ptr<T>

• Non-owning, transient refs: & and const&

• Owner/transient split has advantages

• Avoids most book-keeping, no tracing GC

• Faster, more deterministic behaviour

Memory safety
The main thing

• But C++ pointer-ish types let you do terrible things!

• const& can point to a mutable value, may change

• I guess it's cool that it stops you from mutating?

• & and const& can point to already-freed memory

• Or something half-initialized, or half-destructed

• Owner-pointers can be nullptr

• Threads can race on all of them

Memory safety
The main thing

• Rust prohibits all of this nonsense

• Eg. Box<T> is like unique_ptr<T> except

• Has no null value, always points to a T

• Is immutable if there's any live immutable &-reference

• Is inaccessible if there's any live mutable &mut-reference

• Can only move between variables, and not while &-referenced

• Thus two threads cannot race on it (more on this later)

Memory safety
The main thing

• Rust has analogies for everything pointery you're used to in C++

C++ Rust

unique_ptr<T> Box<T>
shared_ptr<T> Rc<T> and Arc<T>
weak_ptr<T> Weak<T>

& T &mut T
const& T & T

* T *mut T
const* T *const T

Memory safety
The main thing

• Those last two are for unsafe, which we're not going to discuss past here

• Unsafe lets you break key rules, is used very carefully inside libraries

• Do not use it for the first 18 months -- you should rarely if ever need it

C++ Rust

* T *mut T

const* T *const T

Memory safety
The main thing

• Two main (weird) ingredients to the rules

• Move semantics

• Borrow checking

• These two ingredients reinforce each other remarkably well

• Commonly called Rust's "ownership system"

Move semantics

Show up in type systems as types
called "substructural" or "affine" or
"linear" or "resource" or "unique"

Let us set all this jargon aside and
enjoy a photograph of a train

The finest way to move

Move semantics
Move is just copy + forget

• Move is just copy + forget

• Lets you make a stronger assumption: uniqueness

• If exactly 1 copy before move, then exactly 1 after

• No need to worry about accidental duplicates of things

• Reference counts, multiple pointers to a value, multiple writers...

• Unique "identity" from creation, through multiple moves, to destruction

Move semantics
Move is just copy + forget

• In C++ you have to do a bunch of work to equip a type with move semantics

• Delete lval-ref copy constructor and assignment operator

• Add rval-ref of same

• Use std::move to turn one into the other

Move semantics
Move is just copy + forget

• Even then C++ keeps it dangerous

• Rval-ref operators need to be written "just right" to move values

• Leave behind a "moved from" husk-of-a-value, can still be used

• Eg. moving from unique_ptr leaves behind a "moved from" nullptr

Move semantics
Move is just copy + forget

• In Rust move semantics are the normal case

• Any non-primitive is moved when assigned or passed as argument

• What you get (and all you get) if you define a new struct

• Many types never implement anything besides this

• Common to assume all you can do is move a type

Move semantics
Move is just copy + forget

• Can opt-in some POD types to be Copy

• Allows trivial, implicit memcpy-duplications

• But only if opted-in and guaranteed safe:

• Nothing with mutable references or pointers that might own data

• Can also opt-in some types to have deep-Clone

• Allows nontrivial, explicit .clone() for allocating-duplication

• An attribute will "derive" (code-generate) this, no boilerplate needed

Move semantics
Move is just copy + forget

• Critically, in Rust when you move a value it's gone!

• Statically

• You can't use the place moved-from anymore

• Local variable is de-initialized, can't be referenced anymore

• Struct field can only be moved-out of by deconstructing the struct

• Or swapped-in-place with some other value of same type

Move semantics
Move is just copy + forget

• This makes for some interesting (often helpfully safe) patterns

• Moving a value into a mutex or channel, for multithreading

• Iterators that drain their container, moving-out all values

• Methods that take self by-move, taking it away from caller

• Closure types that can only be called at most once

• Encoding FSMs with phantom types and arg-consuming functions

• The universal drop<T>(x: T) { } function that takes and drops anything

Move semantics
Move is just copy + forget

• And, as a segue to our next section:

• Immutable references can be copied

• Mutable references can only be moved

• This will make more sense as we explore borrowing

Borrow checking

This is maybe the strangest part

It's "borrow checking" time!

Let us picture an orderly library

Borrow any book you want to read

(So long as it exists)

But only write in your own book

Borrow checking
Preface about mut keyword

• Everything in Rust is default-immutable

• Mutability is opt-in with mut keyword, unlike C++ immutability opt-in const

• This is true about references too:

• C++ immutable const& is written as just plain & in Rust

• C++ mutable & is written as &mut in Rust

• Except, of course, that the rules are also somewhat different in Rust

Borrow checking
Preface about term "borrowing", at least among true fans

act or
object & &mut

verb forming a reference "borrowing" "mutably borrowing"

noun reference "a borrow" "a mutable borrow"

adjective referent "borrowed" "mutably borrowed"

Borrow checking
The rules

• Borrow checking enforces two main sets of rules

• "Referent outlives reference" / "lifetimes"

• To avoid dangling/wild pointers

• "Shared xor mutable" / "static reader-writer locking"

• To avoid invalidating one pointer by writing through another

• This is all static, compile-time checking, not runtime mechanisms

Borrow checking
Referent outlives reference

• First set of rules: referent outlives reference

• Prevents borrows pointing at garbage memory

• You can only borrow something (form a & or &mut reference) if:

• The borrowed thing exists before the borrow starts

• The borrowed thing exists after the borrow is done

Borrow checking
Referent outlives reference

• This is tracked through extra (static, compile-time) variables called "lifetimes"

• Often inferred / invisible, but sometimes written explicitly

• Written as a name with a leading single quote, after the ampersand

• Like &'a or &'some_lifetime mut

• It can help to give them informative names

• Unfortunately lots of times they get named 'a, 'b, 'c

Borrow checking
Referent outlives reference

• This is weird and does not read like C++. It's new.

• Here's an example:

struct Foo<'a> {

 x: &'a i32,

 y: &'a mut i64

}

• Nobody likes how this reads and it never gets easier on the eyes

Borrow checking
Referent outlives reference

• Sometimes you have to write 'a-outlives-'b relationships between them

struct Foo<'event, 'session: 'event> {

 e: &'event i32,

 s: &'session mut i64

}

• This means 'session is some lifetime that outlives 'event

Borrow checking
Referent outlives reference

• Yes, that : means lifetimes are related through subtyping

• References with longer lifetimes are subtypes of those with shorter ones

• This is confusing to everyone: it seems backwards

• It's correct because lifetimes are "at least" statements / lower bounds

• Something that lives "at least 100 years" also lives "at least 2 years"

• Not vice-versa

• Stare at those statements until you're sure -- it confuses everyone

Borrow checking
Shared xor mutable

• Second set of rules: shared xor mutable

• Means that any memory-write will not invalidate some other pointer

• Most important "at a distance" (other functions, other threads)

• Can even save you "up close" (same function and thread)

• Eg. borrow an enum (variant type) in case X, then set it to case Y, oops

Borrow checking
Shared xor mutable

• Repeat until it is a reflex in your thoughts

• Sharing, or mutating, but not both

• You can have multiple & refs that share read-access to some memory

• You can have one &mut ref that has write-access to some memory

• You (statically) can't have both at once

• Just a static, compile-time-enforced version of a read-write lock

Borrow checking
Shared xor mutable

• In fact any &mut ref is an exclusive access path to the referent

• Eg. this will not compile, since x can't be read while mutably borrowed:

fn main() {

 let mut x = 10;

 let r = &mut x;

 let y = x + 1;

 println!("*r = {}", *r);

}

Borrow checking
Shared xor mutable

• This version will compile, since the borrow is "shared" (immutable):

fn main() {

 let mut x = 10;

 let r = &x; // <- changed to immutable borrow

 let y = x + 1;

 println!("*r = {}", *r);

}

Borrow checking
Shared xor mutable

• This version will again not compile, since the borrow freezes x:

fn main() {

 let mut x = 10;

 let r = &x;

 x = x + 1; // <- changed to mutate x

 println!("*r = {}", *r);

}

Borrow checking
Summary

• Borrow checking has lots of implications

• All iterator invalidation cases in C++ are statically prohibited

• Looping over a collection: collection frozen

• Accessing a bucket in a hashtable: table frozen

• This actually makes many collection-access patterns tricky!

Borrow checking
Summary

• Borrow checking has lots of implications

• Immutability is deep

• In C++ terms, const (methods, pointers) are transitive through pointers

• Interestingly, so is mutability

• Mutability isn't designated on individual struct fields

• Either a whole struct is held in an exclusive mutable owner

• Or someone has borrowed an exclusive &mut pointing into that owner

Borrow checking
Summary

• Borrow checking is an over-approximate safety check

• Some things that seem ok-ish and useful are unfortunately off limits

• Eg. "parent" links in trees using & are impossible

• Don't even ask about doubly-linked lists

• It is being made more precise as time passes

• Newer Rust editions typically enable finer-grained borrow tracking

• Things you thought "ought to be ok", but weren't, might start being ok

Borrow checking
Summary

• Just getting program past borrow checker can be hard

• Surprising how many aliases were hiding in C++

• Eg. how every non-const method call can change members via this

• If you felt OOP was a little error-prone, now you know why

• Helps to only borrow specific fields, not self as a whole

• Helps to restrict to arg-passing and returns, not store & refs in structs

Borrow checking
Summary

• Don't be too much of a purist:

• Borrow checker only cares about & and &mut

• You don't have to use them too extensively

• Move owned values around instead of borrowing

• Box, Rc and .clone() occasionally, it's fine, I permit you

• Much of my own code rarely mentions lifetimes

• Get your program working, add borrows gradually

Part 3

Easy stuff: everything else

Everything else
A tour of some highlights

• Stretch legs, get a snack

• Remainder is more casual

• Grocery list of features

• Knowing what to read up on

• And some quirks, surprises

• Resources for learning more

Modeling data
Rust nouns

• The easiest slide:

• Signed integers: i8, i16, i32, i64, i128, isize

• Unsigned integers: u8, u16, u32, u64, u128, usize

• Floating point: f32, f64

• Boolean: bool

• Unicode codepoint: char

Modeling data
Primitives

• The "unit" type, with one inhabitant: ()

• You'll see this all the time, it's like void in C++

• The "never" type, with zero inhabitants: !

• This is much less common, more like [[noreturn]] in C++11

• Tuple types: (T, U, V)

• Similar to std::tuple, for when a named struct type is overkill

• Arrays and slices (covered next), plus pointers and references also called "primitive"

Modeling data
Less obvious primitives

• Homogeneous bulk data has 3 main forms

• Array: fixed size, owns data stored in the value

• eg. an array of 12 i8 elements: [i8; 12]

• Vector: dynamic size, owns data stored in the heap

• eg. a vector of i8, unknown length: Vec<i8>

• Slice: pointer-and-length pair, borrowed from somewhere else

• eg. a slice of some i8 values in some vector or array: &[i8]

Modeling data
Arrays, vectors and slices

• Strings are treated similarly to arrays, but with special cases

• char: 21bit "Unicode scalar value", stored in 32bit word

• Can theoretically make [char;N] or Vec<char> or &[char]

• But people very rarely use this; instead they use

• String: dynamic size, a bit like Vec<u8>, but guaranteed UTF-8

• &str: pointer-and-length pair, UTF-8, borrowed from some String or static str

• Similar to C++17 std::string_view

Modeling data
Unfortunately, as you know, Unicode

• You cannot randomly access &str or String and get a char

• If you think about it, this is just being honest about char vs. UTF-8

• You can iterate over the chars (produced one by one)

• You can extract optional sub-slices at UTF-8 codepoint boundaries

• You can borrow a &[u8] slice and randomly access the u8s

• You can convert to a Vec<char> and randomly access the chars

Modeling data
A surprise about strings

• Rust code uses two main type-constructors for named aggregates:

• Struct:

• Fairly similar to C++ struct, won't say much more

• Enum:

• Much richer than C++ enum or even enum class

• Tagged disjoint union, more like C++17 std::variant

• Pattern-based match with exhaustiveness checking, more like switch

Modeling data
Structs and enums

• Two generic enums used very ubiquitously:

• Option<T> which can be either Some(T) or None

• Similar to C++17 std::optional, used anytime you need a sentinel value

• Recall: the pointer-like types in Rust have no nullptr inhabitant!

• Result<T,E> which can be either Ok(T) or Err(E)

• Used for conveying value-or-an-error, have special syntax (see later)

Modeling data
Structs and enums

• There is no inheritance or subtyping of structs or enums

• Manually nest / delegate to inner shared types

• There are no copy constructors, assignments or conversions through user code

• Really there are no constructors at all, just Foo::new() by convention

• Some patterns are basically forbidden, or at least Very Surprisingly Hard

• Cycles and sharing, mutable globals, anything violating ownership rules

• For both: try using existing "special library types" with safe interfaces

• Rules can be broken through unsafe; that's what the they do in implementation

Modeling data
Limitations

Making things happen
Rust verbs

• Functions always have type signatures; inside types optional, like C++ auto

• Function decls look like fn foo(x: u8) -> u8 { ... }

• Body contains a bunch of statements: local decls or expressions

• let id: type = ... is the only local decl worth mentioning here

• Everything else is an expression, which can nest

• Eg. let x = if foo() { 10 } else { 11 };

• The most surprising part is "where to put the semicolons", yawn

Making things happen
Functions, statements, expressions

• loop { ... } is an infinite loop, for various reasons

• Heads of control structures don't have parentheses

• while x > 10 { ... }

• if x + 5 < 11 { ... }

• Last expression in a block or fn is its value, don't need to write return

• And then also: semicolon discards previous expr, provides implicit ()

• Thus: fn add(x: u8, y: u8) { x + y }

• Wasn't kidding about semicolons tripping you up

Making things happen
A few expression peculiarities

• Struct initialization: Foo { x: 10, y: 11 }

• Error-propagation sugar on Result<T,E>-typed calls: foo()?.x.bar()?

• Closures a bit like C++11 lambdas: |x, y| x + y

• Macro-invocations like println!(...), always marked with ! unlike C/C++

• Pattern-match, like C/C++ switch but much more powerful, used everywhere:

 match ... {
 pattern => ...,
 pattern => ...
 }

Making things happen
A few special expressions

• As with C++ there's an iterator abstraction and a range abstraction

• In Rust, Range implements the Iterator trait; we'll meet traits shortly

• Range expressions have syntax sugar like 1..10 or x..=y

• for ... in ... { ... } is sugar for an iterator while-match loop

• Iterators are very powerful but still get optimized away completely

• Read the assembly, it'll just be pointer-bumping loops like C++

• Lots of generic iterator combinators, like C++20 std::range library

Making things happen
Iterators and ranges

• As with C++ a lot of the action happens via type-directed dispatch

• A.k.a. method calls: foo.bar(x,y,z)

• What method does this call? If only the answer was simple!

• In Rust, this will be resolved to an impl of a trait

• trait is like C++20 concept, or a partial abstract class

• impl is a bit unlike anything in C++

Making things happen
Method calls, traits and impls

• A trait defines a named set of methods over unknown type Self

• Then usable as a constraint on a type parameter

• Like a C++20 concept applied to a typename

• Typechecked as pure abstractions, independent of implementations

• As are functions generic over traits

• Errors caught before instantiation, unlike C++ templates

• No SFINAE! Generic function can only call trait-defined methods

Making things happen
Traits

• Example:

 
 trait Beeper {
 fn beep(&self);
 }

 fn beep_one<B:Beeper>(b: &B) {
 b.beep();
 }

Making things happen
Traits

• Trait may also have some associated types and constants

• Possibly also generic over various type parameters with trait bounds

• May also contain default method bodies, in terms of the constraining traits

• May extend other traits in a DAG, a bit like abstract classes

• Can also be used as an existential "object" type, with dynamic dispatch

Making things happen
Trait additional wrinkles

• impl declares that (and how) some type implements some trait

• Example

 trait Beeper {
 fn beep(&self);
 }

 impl Beeper for i32 {
 fn beep(&self) {
 println!("beep {} times", self);
 }
 }

Making things happen
Impls

• Unlike C++, impl is not directly part of a type declaration

• Can happen in crate declaring type or crate declaring trait

• Not by a third party though -- must be one or the other, for coherence

• impl blocks can also be generic over types, so-called blanket impls

• Behaves a bit like a template class that's retroactively automatically inherited
by anything meeting its template requirements

• Can also impl traits for primitives, not just user types

• Very powerful for applying broad new behaviours to existing types

Making things happen
Impls

• There is no way to specialize a trait or have overlapping impls

• There might be someday but don't hold your breath

• There is no ad-hoc function overloading except on Self, via traits

• There is no SFINAE (I think this is good on balance, but..)

• You need traits for any call through generic types in generic code

• By default you can't even x.clone() some x:T, much less do arithmetic

Making things happen
Trait limitations

• Remember how I said "concurrency" earlier?

• There's a lot of multithreading but it's all surprisingly safe

• Special traits to mark sharable data like mutexes, atomics

• Mutexes own data they protect, so must be locked to borrow-through

• Access through RAII guard objects, like C++ std::scoped_lock

• Magic parallel-iterator traits in "Rayon" crate, as easy as execution::par

• Fairly standard for programs to shard-and-parallelize any heavy process

Making things happen
Multithreading

• Multithreading also has a weird cousin "async/await"

• For "much higher concurrency than thread count"

• Eg. server with 100,000 concurrent TCP connections, uses much less memory

• Careful (but awkward) separation between language and supporting crates

• Need to use a "runtime" and special traits from crate such as Tokio

• Language part is async { ... } and .await expressions

• Sugar for making and interacting with resumable finite state machines

• Like C++20 coroutines and std::promise / std::future

Making things happen
Async/await

• Errors have special support

• If anything unrecoverable happens, just panic!() and the program will (mostly-
unrecoverably) unwind, abort, halt. A few exceptions to this, but assume fatal.

• Plausibly recoverable errors are modelled by returning enum Result<T,E>

• There is a special postfix ? operator like foo()? or (a + b)?

• Error-converting early-return if Err(...), or ok value if Ok(...)

• Can see and control where errors are checked and propagated

• Intentionally small, so can chain: foo()?.bar()?.baz()

Making things happen
Errors

Organizing code
Rust filing techniques

• Rust code is organized via two main structures:

• Crates:

• unit of compilation, linking, versioning, distribution, workflow

• Modules:

• hierarchical container of item definitions / names within a crate

Organizing code
Crates and modules

• Rust compiler parses, loads deps for, compiles and links 1 crate at a time

• One .rs file is the crate root, all files it mentions (transitively) get included

• Think of a crate as "a single library or executable" ("all its inputs" and/or "the output")

• A bit like a C++20 module, more like a C# assembly or Java JSR 376 module

• Crates have versions and other metadata serialized on disk

• Versioning machinery allows coexistence of 2 or more versions of same crate

• Also prevents crate-name collisions: 2 crates named foo can coexist

• Symbols all have crate metadata and version info mangled into them

Organizing code
Crates

• For historical reasons, there is a program called cargo

• Deals with everything at-or-above crate level of abstraction

• Versioning, dependencies, metadata

• Package management, upload and download (see crates.io)

• Build, test, profile, documentation automation

• Runs the compiler rustc, which was originally supposed to do all this itself

• Controlled via Cargo.toml file

• You may actually never run the compiler by hand, cargo is very thorough

Organizing code
Crates and cargo

http://crates.io

• Modules are a static tree of containers for declarations

• Similar to C++ namespace, maybe more similar to Java package

• Map to a specific scope or file in a source directory tree, have visibility controls

• Crate root .rs file is an anonymous module (keyword crate) the root of any module path

• Can declare sub-modules, which may take 3 forms

• Inline modules: mod foo { ... }

• Source module in curr dir: mod foo; // at root, attaches foo.rs

• Source module in sub dir: mod bar; // in foo.rs, attaches foo/bar.rs

Organizing code
Modules

http://foo.rs

• Visibility control defaults to private, must mark public things pub

• Modules default to empty, must explicitly use anything you want

• There is a special set of standard decls called "the prelude" auto-used

• You can turn that off too if you want to be extra strict

• Often re-export imported items with cutesy pub use item

• Module system appears to trip lots of people up

• More hierarchy and explicit structure than many languages

• More things denied-by-default

Organizing code
Three module-system surprises

Resources
Things to click on, install, read, watch, buy

• Community makes its own very good installer rustup.rs

• Can also apt install cargo or brew install rustup-init

• You almost certainly want to use an IDE based on rust-analyzer

• vscode works very well, vim and emacs apparently also good

• rust-analyzer.github.io

• There is an older, deprecated backend called RLS; skip it

• JetBrains and some other vendors have their own also

Resources
Tools and setup

http://rustup.rs
https://rust-analyzer.github.io/

• If you can only bookmark one thing, bookmark this

• Rust Language Cheat Sheet: cheats.rs

• Covers the language exhaustively

• Covers project layout, coding guides, tool references

• Has diagrams, idioms, conversion tables, calculators

• Links to every major additional doc and index site

• Very dense, but an absolute work of art

Resources
Major Rust websites to bookmark

https://cheats.rs/

• Main website: www.rust-lang.org

• Language docs:

• "The Book / TRPL": doc.rust-lang.org/book

• Reference: doc.rust-lang.org/stable/reference

• Little Book of Rust Books: lborb.github.io/book/

• Stdlib docs doc.rust-lang.org/stable/std

• Packages: crates.io or alternative site lib.rs

• Package docs docs.rs

Resources
Major Rust websites to bookmark

http://www.rust-lang.org
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/reference/
https://lborb.github.io/book/
https://doc.rust-lang.org/stable/std
http://crates.io
http://lib.rs
http://docs.rs

• "Rust by Example": doc.rust-lang.org/stable/rust-by-example

• "Rust by Practice": practice.rs

• "Rust Cookbook": rust-lang-nursery.github.io/rust-cookbook/

• "½ Hour to Learn Rust": fasterthanli.me/articles/a-half-hour-to-learn-rust

Resources
If you prefer to learn from examples

https://doc.rust-lang.org/stable/rust-by-example
https://practice.rs
https://rust-lang-nursery.github.io/rust-cookbook/
https://fasterthanli.me/articles/a-half-hour-to-learn-rust

• anyhow: error handling

• rand: randomness

• regex: regexes

• im: immutable / functional collections

• chrono: dates and times

• itertools: iterator combinators

• log, tracing: logging and tracing

• num: generic & wide arithmetic

• hyper, reqwest, warp: HTTP

Resources
Major crates to know & use

• nom: binary parser combinators

• criterion: profiling

• bumpalo: arena allocation

• rayon, crossbeam: parallelism

• rustls, ring, dalek: cryptography

• tokio: async/await & network IO

• serde: serialize/deserialize

• proptest, cargo-fuzz: random testing

• bindgen, cxx, autocxx: C/C++ interop

• Rust for C++ developers - What you need to know to get rolling with crates

• www.youtube.com/watch?v=k7nAtrwPhR8

• A Firehose of Rust, for busy people who know some C++

• www.youtube.com/watch?v=IPmRDS0OSxM

• A C++ Programmer's View on Rust

• www.youtube.com/watch?v=DGbsHENouy4

Resources
If you like watching several more hours of talking and slides

https://www.youtube.com/watch?v=k7nAtrwPhR8
https://www.youtube.com/watch?v=IPmRDS0OSxM
https://www.youtube.com/watch?v=DGbsHENouy4

Resources
If you like giant books

• Highly recommend this one if
you happen to want 738 pages
of exquisite detail about why
everything in Rust is the way it is
and how to use it well.

• Written by my friends and former
colleagues, obvious conflict of
interest but I do actually think it's
very good also.

• There are other good books!

Fini

