21 compilers and
3 orders of magnitude
In 60 minutes

pppppppp

Hello!

e | am someone who has
worked (for pay!) on some
compilers: rustc, swiftc, gcc,
clang, llvm, tracemonkey, etc.

e Ron asked if | could talk about
compiler stuff | know, give
perspective on the field a bit.

e This is for students who
already know roughly how to
write compilers, not going to
cover that!

the speaker, in 1979

| like compillers!

Relationship akin to "child
with many toy dinosaurs”.

Some are bigger and scarier.
We will look at them first.

Some are weird and
wonderful. We will visit them
along the way.

Some are really tiny!

Borrowsaur fighting a Thunkasaur

Goal for talk

| expect gap between class
projects and industrial
compilers is overwhelming.

Want to explore space
between, demystify and make
more design choices clear.

Reduce terror, spark curiosity,
encourage trying it as career!

If | can compiler, so can youl!

How to draw an owl

1.

1. Draw some circles

2. Draw the rest of the fucking owl

Plan of talk

Describe a few of the giants.

Talk a bit about what makes them so huge & complex.

Wander through the wilderness (including history) looking
for ways compilers can vary, and examining specimens.

Also just point out stuff | think is cool / underappreciated.

Caveats

I'm not a teacher or very good at giving talks.

Lots of material, not ideal to stop for questions unless
you're absolutely lost. Gotta keep pace!

But: time at end for questions and/or email followup.
Happy to return to things you're curious about. Slides are
numbered! Jot down any you want to ask about.

Apologies: not as much industry-talk as | promised. Will
try for some. But too many dinosaurs for show and tell!

Part 1: some giants

| B

Specimen #1

Clang

~ . - . LValue CodeGenFunction::EmitLValue(const Expr *E) {
2m lines of C++: 800k lines et a L
switch (E->getStmtClass
Clang DIUS 1_2m LLVM_ Self default: return EmitUnsupportedLValue(E, "1l-value expression");
. case Expr::0bjCPropertyRefExprClass:
hOStlng, bOOtStrapped frOm GCC. 1lvm_unreachable("cannot emit a property reference directly");
case Expr::0bjCSelectorExprClass:
return EmitObjCSelectorLValue(cast<0ObjCSelectorExpr>(E));
C I f .I C C casetExprI:E:Q?%EIE%ExErCI?ss:t 0biCIsaE (E))
- return EmitObjCIsaExpr(cast<0bjCIsaExpr> ;
anguage aml y () ++’ case Expr::BinaryOperatorClass:
. . return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
ObJC) mUItI_target (23)_ case Expr::CompoundAssignOperatorClass: {
) QualType Ty = E—>getTypel();

if (const AtomicType *AT = Ty—->getAs<AtomicType>())
Ty = AT->getValueType();
if (!Ty->isAnyComplexType())
Sln Ie AST + LLVM |R return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
g; . N return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
case Expr::CallExprClass:
case Expr::CXXMemberCallExprClass:
case Expr::CXXOperatorCallExprClass:

2007-n0W, Iarge mU|t|—Org team_ case Expr::UserDefinedLiteralClass:

return EmitCallExprLValue(cast<CallExpr>(E));

Good diagnostics, fast code.

Originally Apple, more
permissively licensed than GCC.

Specimen #2

Swiftc

~530k IineS Of C++ DIUS 2m RValue RValueEmitter::visitIfExpr(IfExpr *E, SGFContext C) {

auto &lowering = SGF.getTypelLowering(E—>getType());

|ines Clang and LLVM_ Many if (lowering.isLoadable() || !SGF.silConv.uselLoweredAddresses()) {

// If the result is loadable, emit each branch and forward its result
// into the destination block argument.

Same au‘thors_ NO't Self—hOSting_ Condition cond = SGF.emitCondition(E->getCondExpr(),

/xinvertConditionx/ false,

SGF.getLoweredType(E->getType()),
NumTrueTaken, NumFalseTaken);
cond.enterTrue(SGF);
[\j (j I ?ILValue trueValue;
ewer app eV anguage' auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));

trueValue = visit(TE).forwardAsSingleValue(SGF, TE);

cond.exitTrue(SGF, trueValue);

Tightly integrated with clang, ot enterFatectser):
interop with C/ODbjC libraries. e sl

auto EE = E->getElseExpr();
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);

¥

Extra SIL IR for optimizations. Cond.exltFalse(SGF, falsevaue):

Multi-target, via LLVM.

2014-now, mostly Apple.

Specimen #3

Rustc

~360k lines of Rust, plus 1.2m fn expr_as_rvalue
lines LLVM. Self-hosting, Scope: Optioncregians Scope>,
bootstrapped from OCaml.) -> Blockhnd<Rvalue< tox>> {

"expr_as_rvalue(block={:?}, scope={:7}, expr={:?})",
block, scope, expr

);

Newer systems language. let this = self;

let expr_span = expr.span;
let source_info = this.source_info(expr_span);

match expr.kind {

Two extra IRs (HIR, MIR). P gion scoper

region_scope,

lint_level,

value,

} :>-L{ (1:)
1 : et region_scope = (region_scope, source_info);
MUItI'tar et Vla LLVM. this.in_scope(region_scope, lint_level, block, |this| {
)
this.as_rvalue(block, scope, value)

})
}

2010-now, large multi-org team.

Originally mostly Mozilla. And yes
| did a lot of the initial bring-up so
my name is attached to it forever;
glad it worked out!

10

Aside: what is this "LLVM"?

e Notice the last 3 languages all end in
LLVM. "Low Level Virtual Machine"
https://github.com/llvm/llvm-project

-~
-

¢ Program

!’l(Lions

» Strongly typed IR, serialization format,
library of optimizations, lowerings to
many target architectures.

INCq

I

.\'U!H'(

* "One-stop-shop" for compiler backends.

e 2003-now, UIUC at first, many industrial
contributors now.

-
-
-~y
-
-
~
-—
-
A
-
2
—~

VacRine

* Longstanding dream of compiler
engineering world, possibly most
successful attempt at it yet.

FIGURE 1.1. Phases of a compiler, and interfaces between

* Here is a funny diagram of modern them
compilers from Andi McClure (https://
runhello.com/)

11

https://github.com/llvm/llvm-project
https://runhello.com/
https://runhello.com/

Specimen #4

GNU Compiler Collection (GCC)

e ~2.2m lines of mostly C, C++. 600k
lines Ada. Self-hosting, bootstrapped
from other C compilers.

e Multi-language (C, C++, ObjC, Ada, D,
Go, Fortran), multi-target (21).

e |anguage & target-agnostic TREE AST
and RTL IR. Challenging to work on.

e 1987-present, large multi-org team.
e Generates quite fast code.
* Originally political project to free

software from proprietary vendors.
Licensed somewhat protectively.

12

static int
find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,

enum reload_type type, int opnum, int dont_share)
{

rtx in = *p_in;
int 1i;

if (earlyclobber_operand_p (out))
return n_reloads;

for (i = 0; i < n_reloads; i++)
if ((reg_class_subset_p (rclass, rld[i].rclass)
|| reg_class_subset_p (rld[i].rclass, rclass))

/* If the existing reload has a register, it must fit our class. x/
& (rld[i].reg_rtx == 0
| | TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
true_regnum (rld[i].reg_rtx)))
&& ((in '= @ && MATCHES (rld[i].in, in) && ! dont_share
& (out == 0 || rld[i]l.out == @ || MATCHES (rld[i].out, out)))
|| (out != @ & MATCHES (rld[i].out, out)
& (in == 0 || rld[il.in == @ || MATCHES (rld[i].in, in))))
& (rld[il.out == 0 || ! earlyclobber_operand_p (rld[i].out))
&& (small_register_class_p (rclass)
| targetm.small_register_classes_for_mode_p (VOIDmode))
&S MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
return i;

Part 2: why so big?

Size and economics

 Compilers get big because the development costs are seen as
justified by the benefits, at least to the people paying the bills.

* Developer productivity: highly expressive languages, extensive
diagnostics, IDE integration, legacy interop.

e Every drop of runtime performance: shipping on billions of
devices or gigantic multi-warehouse fleets.

* Covering & exploiting all the hardware: someone makes a new
chip, they pay for an industrial compiler to make use of it.

e \Writing compilers in verbose languages: for all the usual reasons
(compatibility, performance, familiarity).

14

Tradeoffs and balance

This is ok!

The costs and benefits are context dependent.

Different contexts, weightings: different compilers.
Remainder of talk will be exploring those differences.

Always remember: balancing cost tradeoffs by context.

Totally biased subset of systems: stuff | think is interesting
and worth knowing, might give hope / inspire curiosity.

15

Part 3: variations
(this part is much longer)

Variation #1

Fewer optimizations

 |n some contexts, "all the optimizations” is too much.

e Joo slow to compile, too much memory, too much
development / maintenance effort, too inflexible.

e Common in JITs, or languages with lots of indirection

anyways (dynamic dispatch, pointer chasing): optimizer
can't do too well anyways.

17

Proebsting's law

o 'C iler Ad Doubl 4 Discussion | | |
Omp| er vances voubie ['he results of our experiment suggest that Proebsting’s Law 1s

: I probably true. The reality 1s somewhat grimmer than Proebsting
ComDUtlng Power Every 18 Years initially supposed. Research in optimizing compilers has been
ongoing since 1955. The compiler technology developed over
this 45-year period is able to improve the performance of integer

i SarcaSt|C JOke / real Comparlson to intensive programs by a factor of 3.3. This corresponds to
. niform performance improvements of about 2.8% per vear.
Moore's law: hardware doubles e o e T L S S gl

Even if we assume that the beginning of useful compiler

power every 18 months Swam PS optimization research began in the mid 1960°s [5], the uniform
. performance improvement on integer intensive codes due to
Compllers. compiler optimization 1s still only 3.6% per year. This lies in

stark contrast to the 60% per year performance improvements we
can expect from hardware due to Moore’s Law.
i Emp|r|Ca| Observat|on though' The performance difference between optimized and unoptimized

programs 1s larger for the floating-point intensive codes In

Opt|m|zat|0ns seem to Only win SPEC{p95. This indicates that compiler research has had a
~3'5X, after 60+ vears Of Work_ larger effect on Improving the pcrto‘rmancc ()f.SCllef'l'L‘ codcs
~ than on improving the performance of ordinary, integer intensive
applications. Again, if we assume compiler research has been
. ongoing since 1955, we get a doubling of performance every 16
° - SFTe » T 0 : > , -
LeSS true as Ianguage ga|nS more years. This corresponds to uniform performance improvements
. . . . ~f « ; 0, - o ren e A8 wyes —— Thic 1c ,
abstractlons to ellmlnate (|_e_ of about 4.9% per year over t‘h|§ 45 year period. This 1s only
o i i slightly better than the results for integer intensive programs.
specialize / de-virtualize). More

true if lower-level. Scott, Kevin. On Proebsting's Law. 2001

18

Frances Allen
Got All The G.ood Ones

‘: = ‘ {{ fi
1971: "A Catalogue of | . e

Optimizing Transformations”.

The ~8 passes to write if
you're going to bother.

Inline, Unroll (& Vectorize),
CSE, DCE, Code Motion,
Constant Fold, Peephole.

That's it. You're welcome.

Many compilers just do those,
get ~80% best-case perf.

"
(
l

https://commons.wikimedia.ora/wiki/File:Allen_ mg_2528-3750K-b.jpg - CC BY-SA 2.0

19

https://commons.wikimedia.org/wiki/File:Allen_mg_2528-3750K-b.jpg

O

Specimen #

660k lines C++ including backends. Not
self-hosting.

// Shared routine for word comparison against zero.
void InstructionSelector::VisitWordCompareZero(Nodex user, Nodex value,
FlagsContinuationx cont) {
// Try to combine with comparisons against @ by simply inverting the branch.
while (value—>opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {

JavaScript compiler in Chrome, Node.

Multi-target (7), multi-tier JIT.
Optimizations mix of classical stuff and
dynamic language stuff from Smalltalk.

Multiple generations of optimization and
IRs. Always adjusting for sweet spot of
runtime perf vs. compile time, memory,
maintenance cost, etc.

Recently added slower (non-JIT)
Interpreter tier, removed others.

2008-present, mostly Google, open
source.

20

Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;

user = value;
value = m.left().node();
cont->Negate();

}

if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont—>0verwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kInt32LessThan:
cont—>0verwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont—>0verwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThan:
cont—>0verwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont—>0verwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);

https://github.com/dotnet/roslyn

Variation #2

Compiler-friendly implementation
(and input) languages

Note: your textbook has 3 implementation flavours. Java, C,
ML. No coincidence.

ML designhed as implementation language for symbolic logic
(expression-tree wrangling) system: LCF (1972).

LCF written in Lisp. Lisp also designed as implementation
language for symbolic logic system: Advice Taker (1959).

Various family members: Haskell, OCaml, Scheme, Racket.

All really good at defining and manipulating trees. ASTs, types,
IRs, etc. Usually make for much smaller/simpler compilers.

21

Specimen #6

Glasgow Haskell Compiler (GHC)

. stmtToInstrs :: CmmNode e x —> NatM InstrBlock
e 180k lines Haskell, self- StntToInstrs sint = do

dflags <- getDynFlags

is32Bit <- is32BitPlatform

hosting, bootstrapped from S enntoment 5 > return (unit0L (COMENT s))

CmmComment s
CmmTick {} -> return niloOL

Chalmers Lazy ML compiler. ConUmwind regs — g0

let to_unwind_entry :: (GlobalReg, Maybe CmmExpr) —> UnwindTable
to_unwind_entry (reg, expr) = M.singleton reg (fmap toUnwindExpr expr)
case foldMap to_unwind_entry regs of
tbl | M.null tbl —> return nilOL

¢ Pure_funCtionaI Ianguage, Very | Oﬂ{g{wiemk;m%"gmpLabel <$> getUniqueM

return $ unitOL $ UNWIND 1bl tbl

advanced type-system. Cnmhssign reg src

| isFloatType ty —> assignReg_F1ltCode format reg src

| is32Bit && isWord64 ty —> assignReg_I64Code reg src

| otherwise —> assignReg_IntCode format reg src
where ty = cmmRegType dflags reg

e Several tidy IRs after AST: format = cmnTypeFornat ty

CmmStore addr src
rT1 | isFloatType ty —> assignMem_F1ltCode format addr src
Corey STG, CMM- CUStO | is32Bit && isWord64 ty —> assignMem_I64Code addr src
| otherwise —> assignMem_IntCode format addr src

baCkendS where ty = cmmExprType dflags src
: format = cmmTypeFormat ty

e 1991-now, initially academic
researchers, lately Microsoft
after they were hired there.

22

https://github.com/dotnet/roslyn

Specimen #7

Chez Scheme

87k lines Scheme (a Lisp), self-
hosting, bootstrapped from C-
Scheme.

4 targets, good performance,
iIncremental compilation.

Written on "nanopass framework"
for compilers with many similar
IRs. Chez has 27 different IRs!

1984-now, academic-industrial,
mostly single developer. Getting
down to the size-range where a
compiler is small enough to be
that.

23

(define asm-size
(lambda (x)
(case (car x)
[(asm) @]
[(byte) 1]
[(word) 2]
[else 4]1)))

(define asm-move
(lambda (codex dest src)
(Trivit (dest src)
(record-case src
[(imm) (n)
(if (and (eqv? n @) (record-case dest [(reg) r #t] [else #f]))
(emit xor dest dest codex)
(emit movi src dest codex))]
[(literal) stuff (emit movi src dest codex)]
[else (emit mov src dest codex)]))))

(define-who asm-move/extend
(lambda (op)
(lambda (codex dest src)
(Trivit (dest src)
(case op
[(sext8) (emit movsb src dest codex)

]
[(sext16) (emit movsw src dest codex)]
[(zext8) (emit movzb src dest codex)]
[(zext16) (emit movzw src dest codex)]
[else (sorry! who "unexpected op ~s" op)l)))))

https://github.com/dotnet/roslyn

Specimen #8

Poly/ML

44K lines SML, self-hosting.

Single machine target (plus
byte-code), AST + IR, classical
optimizations. Textbook style.

Standard platform for
symbolic logic packages
Isabelle and HOL.

1986-now, academic, mostly
single developer.

24

cgOp(PushToStack(RegisterArg reg)) =
let
. val (rc, rx) = getReg reg
in
opCodeBytes(PUSH_R rc, if rx then SOME{w=false, b
x=false, r
else NONE)

true,
false }

end

cgOp(PushToStack(MemoryArg{base, offset, index})) =
opAddressPlus2(Group5, LargeInt.fromInt offset, base, index, Ow6)

cgOp(PushToStack(NonAddressConstArg constnt)) =
if is8BitL constnt
then opCodeBytes(PUSH_8, NONE) @ [Word8.fromLargeInt constnt]
else if is32bit constnt
then opCodeBytes(PUSH_32, NONE) @ int32Signed constnt
else
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Basedd, Qw6 (x push x), @w5 (% PC rel x))
in

opb @ [mdrm] @ int32Signed(tag 0)
end
cgOp(PushToStack(AddressConstArg _)) =
(

case targetArch of
Native64Bit => (x Put it in the constant area.)
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based®, Ow6 (* push x), @w5 (x PC rel x));
in
opb @ [mdrm] @ int32Signed(tag 0)
end
Native32Bit => opCodeBytes(PUSH_32, NONE) @ int32Signed(tag Q)
ObjectId32Bit =>

https://github.com/dotnet/roslyn

Specimen #9

CakeML

58k lines SML, 5 targets, self-
hosting.

9 IRs, many simplifying passes.

160k lines HOL proofs: verified!

Language semantics proven to be
preserved through compilation!!!

Cannot emphasize enough. This was
science fiction when | was young.

CompCert first serious one, now
several.

2012-now, deeply academic.

25

val WordOp64_on_32_def = Define °

WordOp64_on_32 (opw:opw) =
dtcase opw of

| Andw => list_Seq [Assign (
Assign (
Assign (
Assign (
| Orw list_Seq [Assign (
Assign (
Assign (Op Or [Var 13; Var 23])
Assign (
| Xor list_Seq [Assign (
Assign (
Assign (
Assign (
| Add list_Seq [Assign (

Const Ow);
Const Ow);
Op And [Var 13; Var 23]);
Op And [Var 11; Var 21]1)]
Const Ow);
Const Ow);

Op Or [Var 11; Var 21])]
Const Ow);
Const Ow);
Op Xor [Var 13; Var 23]);
Op Xor [Var 11; Var 21])]
Const Ow);

Assign (Const ow);

Inst (Arith (AddCarry 33 13 23 29));

Inst (Arith (AddCarry 31 11 21 29))]
| Sub list_Seq [Assign 29 (Const 1w);

Assign 27 (Op Xor [Const (-1w); Var 23]);
Inst (Arith (AddCarry 33 13 27 29));
Assign 27 (Op Xor [Const (-1w); Var 21]);
Inst (Arith (AddCarry 31 11 27 29))]°

val WordShift64_on_32_def = Define °
WordShift64_on_32 sh n = list_Seq
(* inputs in 11 and 13, writes results i and 33 x)

(if sh = Ror then
(let n = n MOD 64 in
(if n < 32 then
[Assign 33 (Op Or

Assign 31 (Op Or

else
[Assign 33 (0p Or

Assign 31 (Op Or

[ShiftVar Lsl
ShiftVar Lsr
[ShiftVar Lsl
ShiftVar Lsr

[ShiftVar Lsl
ShiftVar Lsr
[ShiftVar Lsl

https://github.com/dotnet/roslyn

Variation #3

Meta-languages

Notice Lisp / ML code looks a bit like grammar productions: recursive
branching tree-shaped type definitions, pattern matching.

There's a language lineage that took that idea ("programs as grammars") to
its logical conclusion: metacompilers (a.k.a. "compiler-compilers”). Ultimate
in "compiler-friendly" implementation languages.

More or less: parser glued to an "un-parser”.

Many times half a metacompiler lurks in more-normal compilers:

e YACCs ("yet another compiler-compiler"): parser-generators

e BURGs ("bottom-up rewrite generators"): code-emitter-generators

See also: GCC ".md" files, LLVM TableGen. Common pattern!

20

Aside: SRI-ARC

* Stanford Research Institute - Augmentation Research Lab. US Air
Force R&D project. Very famous for its NLS ("oNLine System”).

e History of that project too big to tell here. Highly influential in forms of
computer-human interaction, hypertext, collaboration, visualization.

* Less well-known is their language tech: TREE-META and MPS/MPL.

Specimen #10

TREE-META

184 lines of TREE-META. Bootstrapped
from META-II.

In the Schorre metacompiler family
(META, META-II)

SRI-ARC, 1967. Made to support
language tools in the NLS project.

"Syntax-directed translation": parse
input to trees, un-parse to machine
code. Only guided by grammars.

Hard to provide diagnostics, type-
checking, optimization, really anything
other than straight translations.

But: extremely small, simple compliers.

Couple pages. Ideal for bootstrap phase.

28

.META PROGM

OUTPTI-,—] => % %1 ':' % 'SPUSHI;' % %2 'SPOPJ;"' % ;

AC[-,-,-1 => %1 %3 ACX [*2,#1] #1 ':' % ;

ACX[AC[-,—,-1,#1] => #1 ');"' % *1:x1 *1:x3 ACX[x1:%2,#1]
[-,#1] => #1 ');"' % %1 ;

T/ => "%BT;DATA(Q"' ;

F/ => "%BF;DATA(Q"' ;

BALTER[-] => '%SAV;' % *1 '%RSTR;' % ;

OER[-,-] => %1 '%0ER;' % %2 ;

OUTAB[-] => <TN <— CONV[%1]; OUTITN] > ');"' % ;

ERCODE [-,NUM] => %1 '%ERCHK;DATA(' OUTABI[*2]
[-.-] => x1 '%ERSTR;DATA(' OPSTR[*2] ;

ERR[-] => %1 "%ERCHK;DATA(Q);' % ;

NDMK [, -]

NDLB
MKNODE [-]

=> '9%MKND;DATA(@' *1 ',)" % ;
=> "%NDLBL;DATA(@' *1 ');"' % ;
=> '9%NDMK;DATA(' *1 ');' % ;

G00/
SET/

'%0UTRE; '% ;
'"%SET; ' % ;

PRIMI. = '%' %1 ';' %
[.SR] => '%SRP;DATA(' OPSTRI[x1] ;

'%CALL; DATA(@' *1 ');"' % ;

'%TST;DATA("' OPSTR[x1] ;

'%CHRCK; DATA("' OUTABI[x1] ;

% *1 '%BT;DATA(@' #1 ');"' % "%SET;' % ;

=> <B <- 0 > %2 'ENTRY 0;%INIT;%CALL;DATA(@' *x1 ');' %
'%SFIN; ' % ;

CALL[-] =>
STST[-] =>
SCODE[-] =>
ARB[-]1 => #1 ':'
BEGINN[-.-]

In vhe past contract perind Tree Meta was useful in
boouvstranring from the 0l4d XDS=%4L0 to the new F)IP=10.
currently it 1s being used t0 create tnhe first MPL
compiler,

|

Specimen #11 (Segue)

Mesa

sCcall: PROCEDURE [node: TreelIndex] RETURNS [nrets: CARDINAL] =

[42k |ineS Of Mesa (bootstrapped BEGIN -~ generates code for procedure call statement

OPEN FOpCodes;

from MPL, |tse|f from TREE_META) ptsei: CSEIndex « operandtype[(tb+node).son1];

portcall: BOOLEAN « SymTabDefs.XferMode[ptsei] = port;
computedtarget: BOOLEAN;
inTineTree: TreelLink;

» One of my favourite languages! puems: CAROIMALL

sei: ISEIndex;
bti: CBTIndex;

e Strongly typed, modules with fn1neCall: BOOLEAN:
separate compilation and type VITH (thenods).sont SELECT FRON
checked linking. Highly influential BEGIN
(Modula, Java). computedtarges o (Ctxbi(sobrsel) ctxnum).ctxiovel # 16,
ENDCASE =>
e Co-designed language, OS, and e Tinetall « FALSE:
byte-code VM implemented in CPU e, o rereet « THOES

IF ~inlineCall THEN dumpstack[];

microcode, adapted to compiler.

e Xerox PARC, 1976-1981, small
team left SRI-ARC, took MPL.

og https://www.flickr.com/photos/microsoftpdc/4119070676/ - CC BY 2.0

https://www.flickr.com/photos/microsoftpdc/4119070676/

Variations #4, #5, and #6

leverage interpreters

Mesa and Xerox PARC is a nice segue into next few
points: all involve compilers interacting with interpreters.

Interpreters & compilers actually have a long relationship!

In fact interpreters predate compilers.

Let us travel back in time to the beginning, to illustrate!

30

Origins of "computer”

e 1940s: First digital
computers.

o Before: fixed-function
machines and/or humans
(largely women) doing job
called "computer”.

e Computing power literally
measured in "kilo-girls”
and "kilo-girl-hours”.

31

ENIAC: general hardware

e 1945: ENIAC built for US
Army, Ordnance Corps.

Artillery calculations in
WWII.

e "Programmers” drawn
from "computer" staff, all
women.

e "Programming" meant
physically rewiring per-
task.

32

Stored Programs

e 1948: Jean Bartik leads
team to convert ENIAC to
"stored programs”,
instructions (called
"orders") held in memory.

* Interpreted by hardware.
Faster to reconfigure than
rewiring; but ran slowet.

e Subroutine concept
developed for factoring
stored programs.

33

First software pseudo codes:
interpreters on ENIAC, BINAC, UNIVAC

e 1949:"Short Code" software interpreters for higher level
"pseudo-code” instructions (non-HW-interpreted) that
denote subroutine calls and expressions. ~50x slower
than HW-interpreted.

X3 = (X1+ Y1) / X1 * Y1 substitute variables

X3 03 09 X1 07 Y1 02 04 X1 Yl substitute operators and parentheses.
Note multiplication is represented
by juxtaposition.

07Y10204X1Y1 group into 1l2-byte words.
0000X30309Xx1

34

Specimen #12

A-0: the first compiler

Reads interpreter-like pseudo-
codes, then emits "compilation’
program with all codes resolved
to their subroutines.

Result runs almost as fast as
manually coded; but as easy to
write-for as interpreter. An
interpreter "fast mode”.

Rationale all about balancing time
tradeoffs (coding-time, compiler-
execution-time, run-time).

1951, Grace Hopper, Univac

http://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_heggoffice_in_Washington_DC,_1978,_OLynn_Gilbert.jog - CC BY-SA 4.0

Balance between
Interpretation and compilation
Is context dependent too!

Variation #4

Only compile from frontend to IR,
Interpret residual VM code

e (Can stop before real machine code. Emit IR == "virtual machine" code.

e Can further compile or just interpret that VM code.

e Residual VM interpreter has several real advantages:

e Easier to port to new hardware, or bootstrap compiler. "Just get something running".
e Fast compilation & program startup, keeps interactive user engaged.

* Simply easier to write, less labor. Focus your time on frontend semantics.

As a cheap implementation device: bytecode interpreters
offer 1/4 of the performance of optimizing native-code

compilers, at 1/20 of the implementation cost.

https://xavierleroy.org/talks/zam-kazamO05.pdf

37

https://xavierleroy.org/talks/zam-kazam05.pdf

Specimen #13

Roslyn

350k IineS C#, 320k Iines VB. ?rivate void EmitBinaryOperatorInstruction(BoundBinaryOperator expression)

switch (expression.OperatorKind.Operator())

Self—hOSting, bOOtStrapped Oﬁ i case BinaryOperatorKind.Multiplication:

_builder.EmitOpCode(ILOpCode.Mul);

preViOUS gen. break;

case BinaryOperatorKind.Addition:
_builder.EmitOpCode(ILOpCode.Add);
break;

Multi-language framework o Duitter Enitopcode TL0pCade. Sub)
break;

(C#, VB.NE). RiCh SemantiCS, case BinaryOperatorKind.Division:

if (IsUnsignedBinaryOperator(expression))

gOOd diagnOStiCS, IDE ¢ _builder.EmitOpCode(ILOpCode.Div_un);

b
Integration. T

}

break;

_builder.EmitOpCode(ILOpCode.Div);

Lowers from AST to CIL IR.
Separate CLR project
interprets or compiles IR.

2011-now, Microsoft, OSS.

38

http://VB.NET
https://github.com/dotnet/roslyn

Specimen #14

Eclipse Compiler for Java (ECJ)

e 146k lines Java, self-hosting,
bootstrapped off Javac.

e |n Eclipse! Also in many Java
products (eg. Intellid IDEA).
Rich semantics, good
diagnostics, IDE integration.

e L owers from AST to JVM IR.
Separate JVM projects
interpret or compile IR.

e 2001-now, IBM, OSS.

39

/%%
* Code generation for the conditional operator ?:
*
* @param currentScope org.eclipse.jdt.internal.compiler.lookup.BlockScope
* @param codeStream org.eclipse.jdt.internal.compiler.codegen.CodeStream
* @param valueRequired boolean
*/
@Override
public void generateCode(
BlockScope currentScope,
CodeStream codeStream,
boolean valueRequired) {

int pc = codeStream.position;

BranchLabel endiflLabel, falselLabel;

if (this.constant != Constant.NotAConstant) {
if (valueRequired)

codeStream.generateConstant(this.constant, this.implicitConversion);
codeStream.recordPositionsFrom(pc, this.sourceStart);
return;

+
Constant cst = this.condition.optimizedBooleanConstant();
boolean needTruePart =

!'(cst !'= Constant.NotAConstant && cst.booleanValue()
boolean needFalsePart =

'(cst != Constant.NotAConstant && cst.booleanValue()
endifLabel = new BranchLabel(codeStream);

https://github.com/dotnet/roslyn

Variation #5

Only compile some functions,
Interpret the rest

e Cost of interpreter only bad at inner loops or fine-grain. Outer
loops or coarse-grain (eg. function calls) similar to virtual dispatch.

e Design option: interpret by default, selectively compile hot
functions ("fast mode") at coarse grain. Best of both worlds!

e Keep interpreter-speed immediate feedback to user.

e |nterpreter may be low-effort, portable, can bootstrap.

e Defer effort on compiler until needed.

 Anything hard to compile, just call back to interpreter.

40

Specimen #15

Pharo/Cog

54k line VM interpreter and 18k line JIT: C
code generated from Smalltalk
metaprograms. Bootstrapped from Squeak.

Smalltalk is what you'll actually hear people
mention coming from Xerox PARC.

Very simple language. "Syntax fits on a
postcard”. Easy to interpret.

Complete GUI, IDE, powerful tools.

Standard Smalltalk style: interpret by
default, JIT for "fast mode". Compiler
bootstraps-from and calls-into VM
whenever convenient.

Targets ARM, x86, x64, MIPS.

2008-now, academic-industrial consortium.

41

J System Browser: SimpleStackBasedCogit

Printf
Balloon-Engine-P
BytecodeSets-Ne
VMMaker-Buildin
VMMaker-Interpr
VMMaker-Interpr
VMMaker-Interpr
VMMaker-)IT
VMMaker-JITSimi
VMMaker-Multith
VMMaker-Plugins
VMMaker-Pluging
VMMaker-Plugine

browse

COURASSDE'
CogClass
CogMethodz
SistaMethc
CogObjectRu
CogObjectl
CogObjec
CogObjec
CogObjectl
Cogit
SimpleStac¢
StackToR

instanc | class

genShortJumplfFalse
distance target
distance := self v3: (self generatorAt: byte0)
ShortForward: bytecodePC

~self genJumplf: objectMemory falseObject to: targ

Branch: O

?

- all -
accessing
bytecode ge
bytecode ge
compile abst
constant sug
external prir
in-line cache
initialization
jit - api
method intr
primitive gel
register mar

senders || impleme || versions || inheritan || hierarchy

Distance: methodObj.
target := distance + 1 + bytecodePC.

(v X+
genSendAbsentl
genSendAbsentl
genSendAbsentl
genSendAbsent(
genSendAbsent<

genSendDirectec

genSendLiteralS:
genSendLiteralS:
genSendLiteralSq

& genSendSuper:n

genShortJumplfF
genShortjumplfT
genShortUncond

vars source |

et

eem 11/2/2012 10:57 - bytecode generators - 1 implementor - only in chi

Specimen #16

Franz Lisp

20k line C interpreter, 7,752 line Lisp
compiler.

Older command-line system, standard
Unix Lisp for years.

Like Smalltalk: very simple language.
Actually an AST/IR that escaped from
the lab. Easy to interpret.

Frequent Lisp style: interpret by
default; compile for "fast mode".
Compiler bootstraps-from and calls-
into interpreter whenever convenient.

Targets m68k and VAX.

1978-1988, UC Berkeley.

42

;——— e-move :: move value from one place to anther
; this corresponds to d-move except the args are EIADRS
(defun e-move (from to)
(if (and (dtpr from)
(eq '$ (car from))
(eq @ (cadr from)))
then (
else (

e-write2 'clrl to)
e-write3 'movl from to)))

;——— d-move ::
(defun d-move (from to)

(makecomment " (from ,(e-uncvt from) to

#+(or for-vax for-tahoe)

(cond ((eq 'Nil from) (e-move '($ @) (e-cvt to)))
(e—cvt to))))

emit instructions to move value from one place to another
, (e—uncvt to)))

(t (e—move (e-cvt from)

#+for-68k
(let ((froma (e-cvt from))
(toa (e-cvt to)))
(if (and (dtpr froma)
(eq '$ (car froma))
(and (>& (cadr froma) -1) (<& (cadr froma) 65))
(atom toa)
(eq 'd (nthchar toa 1)))
then ;it's a mov #immed,Dn, where @ <= immed <= 64
; 1.e., it's a quick move
(e-write3 'moveq froma toa)
else (cond ((eq 'Nil froma) (e-write3 'movl '#.nil-reg toa))
(t (e-write3 'movl froma toa))))))

Variation #6

Partial Evaluation Tricks

 Consider program in terms of parts that are static (will not
change anymore) or dynamic (may change).

* Partial evaluator (a.k.a. "specializer") runs the parts that
depend only on static info, emits residual program that only
depends on dynamic info.

 Note: interpreter takes two inputs: program to interpret, and
program's own input. First is static, but redundantly treated
as dynamic.

e So: compiling is like partially evaluating an interpreter,
eliminating the redundant dynamic treatment in its first input.

43

Futamura Projections

* Famous work relating programs P, interpreters |, partial evaluators E, and
compilers C. The so-called "Futamura Projections”:

e 1: E(I,P) — partially evaluate I(P) = emit C(P), a compiled program
e 2: E(E,l) — partially evaluate AP.I(P) = emit C, a compiler!
 3: E(E,E) — partially evaluate Al.AP.I(P) = emit a compiler-compiler!

e Futamura, Yoshihiko, 1971. Partial Evaluation of Computation Process —
An Approach to a Compiler-Compiler. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.10.2747

e Formal strategy for building compilers from interpreters and specializers.

44

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2747
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2747

Specimen #17

Truffle/Graal

240k lines of Java for Graal (VM); 90k
lines for Truffle (interpreter-writing
framework)

Actual real system based on first
Futamura Projection.

Seriously competitive! Potential future
Oracle JVM.

Multi-language (JavaScript, Python,
Ruby, R, JVM byte code, LLVM bitcode)
multi-target (3)

"Write an interpreter with some
machinery to help the partial evaluator,
get a compiler for free"

Originally academic, now Oracle

45

public Variable emitConditional(LogicNode node, Value trueValue, Value
falsevValue) {
if (node instanceof IsNullNode) {
IsNullNode isNullNode = (IsNullNode) node;
LIRKind kind =
gen.getLIRKind(isNullNode.getValue().stamp(NodeView.DEFAULT));
Value nullValue = gen.emitConstant(kind, isNullNode.nullConstant());
return gen.emitConditionalMove(kind.getPlatformKind(),
operand(isNullNode.getValue()),
nullValue, Condition.EQ, false,
trueValue, falseValue);
} else if (node instanceof CompareNode) {
CompareNode compare = (CompareNode) node;
PlatformKind kind =
gen.getLIRKind(compare.getX().stamp(NodeView.DEFAULT))
.getPlatformKind();

return gen.emitConditionalMove(kind, operand(compare.getX()),
operand(compare.getY()),
compare.condition().asCondition(),
compare.unorderedIsTrue(),
trueValue, falseValue);
} else if (node instanceof LogicConstantNode) {
return gen.emitMove(((LogicConstantNode) node).getValue() ?

trueValue : falseValue);

} else if (node instanceof IntegerTestNode) {
IntegerTestNode test = (IntegerTestNode) node;
return gen.emitIntegerTestMove(operand(test.getX()),

operand(test.getY()),

} else {
throw GraalError.unimplemented(node.toString());
}

trueValue, falseValue);

}

https://github.com/dotnet/roslyn

Variation #

Forget IR and/or AST!

In some contexts, even building an AST or IR is overkill.

Small hardware, tight budget, one target, bootstrapping.
Avoiding AST tricky, languages can be designed to help.
So-called "single-pass” compilation, emit code line-at-a-

time, while reading.

Likely means no optimization aside from peephole.

46

Specimen ;

:

-

18

Turbo Pascal

14K instructions including
editor. x86 assembly. 39kb on
disk.

Famous early personal-micro
compiler. Single-pass, no AST
or IR. Single target.

Proprietary ($65) so | don't
have source. Here's an ad!

1983-1992; lineage continues
into modern Delphi compiller.

47

https://github.com/dotnet/roslyn

Specimen #19

Manx Aztec C

21K instructions, 50kb on disk.

AZTEC C - ; GRAM DEVELOPMENT SYSTEM
PORTABLE SOFT WARE APPLE cPim IBM

Contemporary to Turbo
Pascal, one of many
competitors.

Unclear if AST or not, no
source. Probably no IR.

Multi-target, Z80 and 8080.

1980-1990s, small team.

48

https://github.com/dotnet/roslyn

Specimen #20

Not just the past: 8cc

6,740 Iines Of C, Self_hOSting, StatSiXV\é(;)id emit_binop_int_arith(Node *node) {

. . char xop = NULL;
compiles to ~110kb via clang, crne T T breat
. case '~7: op = sub"; break;
220kb via self. case %i op CInub bresk;
case OP_SAL: op "sal"; break;
case OP_SAR: op "sar"; break;

case OP_SHR: op "shr'; break;
case '/': case '%': break;

Donlt have -to use assembly -to gefault: error("invalid operator '%d'", node->kind);

emit_expr(node->left);

get this small! Quite readable B cxon(hode>right)

emit("mov #rax, #rcx");

and simple. Works. D node-viind == /' || node-»kind = %') {

if (node->ty->usig) {
emit("xor #edx, #edx");
emit("div #rcx");

} else {

Single target, AST but no IR, T o
few diagnostics. s mov e, #eax");

} else if (node->kind == OP_SAL || node->kind == OP_SAR ||
node->kind == OP_SHR) {

emit("%s #cl, #%s", op, get_int_reg(node->left->ty, 'a'));
} else {

2012-2016, mostly one p ST e e o
developer.

49

https://github.com/dotnet/roslyn

Grand Finale

Specimen #21

JonesForth

692 inStI‘UCtiOI’] VM, 1 ,490 |ineS FOI’th \ IF is an IMMEDIATE word which compiles @BRANCH followed by a dummy offset, and place

\ the address of the OBRANCH on the stack. Later when we see THEN, we pop that addres

for COmpI|er, REPL, debugger, etC \ ?:fII\EIIUIEDiz'?'EK' calculate the offset, and back-fill the offset.

' @BRANCH , \ compile OBRANCH
HERE @ \ save location of the offset on the stack
0, \ compile a dummy offset

Educational implementation of Forth.

: THEN IMMEDIATE

DUP
. . . HERE @ SWAP - calculate the offset from the address saved on the stack
Forth Ilke Llsp IS nearly VM Code at SWAP ! store the offset in the back-filled location
)) H
input (postfix not prefix). : ELSE IMMEDIATE N |
" BRANCH , definite branch to just over the false-part
HERE @ save location of the offset on the stack
0, compile a dummy offset (1F)
r . . SWAP now back-fill the original (IF) offset
Minimal partial-compiler turns user v same as for THEN word above
@ —_
" n o
words" into chains of indirect-jumps. § SWAP !

Machine-code primitive words.

Interactive system with quote, eval,
control flow, exceptions, debug
inspector. Pretty high expressivity!

2009, one developer.

51

https://github.com/dotnet/roslyn

Coda

TOMIE UTEE) = CAIRIOW B (W)

There have been a lot of languages

http://hopl.info catalogues 8,945 programming
languages from the 18th century to the present

53

http://hopl.info

Go study them: past and present!
Many compilers possible!
Pick a future you like!

The End!

https://en.wikipedia.org/wiki/Dinosaur#/media/File:Ornithopods_jconway.jpg

(I also probably ought to mention that due to using some CC BY-SA pictures,

this talk is licensed CC BY-SA 4.0 international)

955

https://en.wikipedia.org/wiki/Dinosaur#/media/File:Ornithopods_jconway.jpg

